Fósforo liberado por bacterias nativas de las rocas fosfóricas de Riecito (Estado Falcón) y Navay (Estado Táchira) en Venezuela

Autores/as

  • Janeth Portillaϯ Instituto Nacional de Investigaciones Agropecuarias, Maracay, Venezuela.
  • Ricardo Ramírez Postgrado en Ciencias del Suelo. Facultad de Agronomía, Universidad Central de Venezuela. Maracay, Venezuela. https://orcid.org/0009-0002-2237-337X
  • Zenaida Lozano Postgrado en Ciencias del Suelo. Facultad de Agronomía, Universidad Central de Venezuela. Maracay, Venezuela. https://orcid.org/0000-0003-3090-2147

DOI:

https://doi.org/10.51372/bioagro371.10

Palabras clave:

Crecimiento bacteriano, densidad óptica, liberación de fósforo

Resumen

Los suelos ácidos en Venezuela son en general deficientes en fósforo (P), por lo que es necesario usar fertilizantes fosfatados, de alto costo, para lograr buenas cosechas. El uso de roca fosfórica como fuente de P es una alternativa, pero es de baja solubilidad y lenta liberación del P disponible. El objetivo de este trabajo fue identificar bacterias capaces de solubilizar las rocas fosfóricas de Riecito y Navay y liberar P. Para el estudio se usaron 26 cepas colectadas en diferentes lugares en Venezuela, de las cuales 14 fueron utilizadas para medir, en diferentes momentos, el crecimiento bacteriano en función de la densidad óptica. Para determinar la cantidad de P liberado al medio por acción de las cepas, se realizó un experimento in vitro utilizando 100 µL de suspensión bacteriana concentrada en 10 mL de medio cultivo NBRIP (National Botanical Research Institute's Phosphate growth liquid médium) bajo condiciones estériles. Las fuentes de P fueron: fosfato tricálcico (FTC), roca fosfórica Navay (RFN)) y roca fosfórica Riecito (RFR) y sin fósforo (0P), más los testigos no inoculados. Los valores más altos de P, en µg.mL-1 correspondieron al FTC con 320 a 500 seguido por RFN con 133 a 210 y RFR entre 62 y 72. Las cepas G166, La37-26 y Ar146 mostraron los niveles de pH más bajos en los medios de crecimiento enriquecidos con RFN y RFR y se correspondieron con los niveles más altos de P solubilizado. Este comportamiento demuestra que las bacterias con mayor capacidad de acidificación son potencialmente más efectivas solubilizando el P no disponible de las rocas fosfóricas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Amarasinghe, T., C. Madhusha, L. Munaweera. y N. Rottegoda. 2022. Review of mechanisms of phosphate solubilization in rock phosphate fertilizer. Comm. Soil Sci. Plant Anal.53: 944-960.

Casanova, E. y G. Elizalde. 1988. Caracterización mineralógica de algunas rocas fosfóricas venezolanas. Agronomía Tropical 38: 97-107.

Chen, Y.P., P.D. Rekka, A.B. Arun, F.T. Shen, W.A. Lai y C.C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their triicalcium Phosphate solubilizing abilities. Applied Soil Ecology 34: 33-41.

Cisneros, C.P. y J.C. Menijivar. 2017. Efecto de bacterias solubilizadoras de fosfatos sobre el desarrollo de plántulas de café. Agronomía Mesoamericana 28: 149-158.

Fageria, N.K. y V.C. Baligar 2008. Ameliorating Soil Acidity of Tropical Oxisols by Liming for Sustainable Crop Production. Advances in Agronomy 99: 345-399.

Fernández, L.A., P. Zalba, M.A. Gomez y M.A. Sargardoy. 2007. Phosphate solubilizing activity of bacterials strains in soil and their effect on soybean growth under greenhouse conditions. Biol. Fert. Soils 43: 805-809.

García-Sanchez, M., I. Bertran, A. Barakat, Y. Zeroual, A. Oukarroum y C. Plessard, 2023. Improved rock phosphate dissolution from organic acids is driven by nitrate assimilation of bacteria isolated from nitrate and CaCO3 rich soil. PLoS ONE 18: 283-437.

Guang-Can, T.A.O., T.I.A.N Shu-Jun, C.A.I. Miao-Ying y X.I.E. Guang-Hui. 2008. Phosphate-solubilizing and-mineralizing abilities of bacteria isolated from soils. Pedosphere, 18(4): 515-523.

Goenadi, D.H. y Y.S. Siswanto 2000. Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Science Society American Journal. 64: 927-932.

Gunnarsson, N., U.H. Mortenson, M. Socio, y J. Nielsen. 2004. Identification of the Entner–Doudoroff pathway in an antibiotic‐producing actinomycete species. Molecular Microbiology 52: 895-902.

Gyaneshwar, P., G. Naresh Kumar y L.J. Parekh. 1998. Effect of buffering on the phosphate-solubilizing ability of microorganisms. World Journal of Microbiology and Biotechnology 14: 669-673.

Hwangbo, H., R.D. Park, Y.W. Kim, Y.S. Rim, K.H. Park, T.H. Kim et al. 2003. 2-ketogluconic acid production and phosphate solubilization by enterobacter intermedium. Current Microbiology 47: 87-92.

Ivanova, R., D. Bojinova, D. y K. Nedialkova. 2006. Rock phosphate solubilization by soil bacteria. Journal of the University of Chemical Thechnology and Metallurgy 43: 297-302.

Karunai, S. y A.D. Ravindran. 2012. Influence of different carbon and nitrogen sources on insoluble inorganic phosphate solubilization by Bacillus subbilis. Int. J. Adv. Biol. Res. 2: 441-445.

Khan, A.A., G. Jilani, M.S. Akhtar, S.M.S. Naqvi y M. Rasheed 2009. Phosphorus solubilizing bacteria: Occurrence, mechanisms, and their role in crop production. Journal Agriculture and Biology Science 1: 48-58.

Kim, K.Y., D. Jordan y H.B. Krishnan. 1997. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiology Letters. 153: 273-277.

Kumar, V., R.K. Behl. y N. Narula. 2001. Establishment of phosphate- solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol. Res. 156: 87-93.

León, I.A., W.E. Fenster y L.L. Hammond. 1986. Agronomic potential of eleven phosphate rocks from Brazil, Colombia and Peru. Soil Sci. Soc. Am. J. 50: 798-802.

Mander, C., S. Wakelin, S. Young, L. Condron y M. O´Callaghan. 2012. Incidence and diversity of phosphate-solubilizing bacteria are linked to phosphorus status in grassland soils. Soil Biol. Biochem. 44: 93-101.

Martínez, V.R., M. López, F.M. Brossard, G.G. Tejada, A.H. Pereira, Z.C. Parra. 2006. Procedimientos para el estudio y fabricación de biofertilizantes bacterianos. Instituto Nacional de Investigaciones Agrícolas. Maracay, Venezuela. Serie B. N° 11, 88 p.

Metha, S. y C.S. Nautiyal. 2001. An efficient method for qualitive screening of phosphate-solubilizing bacteria, Current Microbiology 43: 51-56.

Moreno-Conn, L.M., M. López-Casallas y F.M. Cruz Barrera. 2021. Solubilización de fosfatos por bacterias del género Burkbolderia aisladas de Oxisoles de la Altillanura Colombiana. Ciencia y Tecnología Agropecuaria. 22(2): e1897.

Murphy, J. y J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim. Acta 27: 31-36.

Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS. Microbiology Letters 170: 265-270.

Osorno, B.L. y N.W. Osorio-Veja. 2017. Evaluación de factores que afectan la bioacidulación de roca fosfórica bajo condiciones in vitro. Revista Colombiana de. Biotecnologia 19: 53-62.

Panhwar, Q.A., R. Othaman, Z.A. Rahman, S. Meon y M.R. Ismal. 2012. Isolation and characterization of phosphate-solubilizing bacteria from aerobic rice. African Journal on Biotechnology 11: 2711-2727.

Pikovskaya, R. 1948. Mobilization of phosphorous in soil in conection with the vital activity of some microbial species. Mikrobiologiya 17: 362-370.

Ramírez, R. 2022. Contaminación de suelos y cultivos con metales pesados y nutrientes en Venezuela. Rev. Fac. Agron. (UCV) 48: 1-17.

Rebi, A., H.M. Kashif, U.F. Chaudhry, M. Zaib, M.Z. Shahid, M. Safdar et al. 2022. Phosphorus availability in soil and uptake by maize from rock phosphate inoculated with PGPR: a review. Nveo-Natural Volatiles & Essential Oils Journal| NVEO 341-355.

Rodríguez, H. y R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growyh promotion. Biothec. Adv. 17: 3 19-339.

Taalab, A.S., y M.A. Badr. 2007. Phosphorus availability from compacted rock phosphate with nitrogen to sorghum inoculated with phospho-bacterium. Journal of Applied Sciences Research 3(3): 195-201.

Tian, J., F. Ge., D. Zhang, y X. Liu, 2021. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biochemical P cicle. Bio. 10: 158-166.

Traverso D., A. Cherni, A.B. Zineb, S.F. Dhane y R. Mhamdi 2017. Fertilization of Phaseolus vulgaris with the Tunisian rock phosphate affects richness and structure of rhizosphere bacterial communities Applied Soil Ecology 114: 1-8.

Wang, J., R. Li, H. Zhang, G. Wei, y Z. Li. 2020. Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC microbiology 20: 1-12.

Zhao, K., P. Penttinen, X. Zhang, X. Ao, M. Liu, X. Yu y Q. Chen. 2014. Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholder cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research 169: 76-82.

Zhu, J., M. Li y M. Whelan. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of the Total Environment 612: 522-537.

Publicado

2025-01-01

Cómo citar

PortillaϯJ., Ramírez, R., & Lozano, Z. (2025). Fósforo liberado por bacterias nativas de las rocas fosfóricas de Riecito (Estado Falcón) y Navay (Estado Táchira) en Venezuela. Bioagro, 37(1), 111-122. https://doi.org/10.51372/bioagro371.10

Número

Sección

Artículos