Impactos subletales del piriproxifeno en rasgos biológicos de especies no objetivo, Drosophila melanogaster (Diptera: Drosophilidae)
DOI:
https://doi.org/10.51372/bioagro371.2Palabras clave:
Descendencia, Drosophila melanogaster, insecto no objetivo, longevidad, piriproxifenoResumen
El piriproxifeno, un análogo de la hormona juvenil (AHJ), se considera una alternativa de menor riesgo a los pesticidas sintéticos para la protección de cultivos. Se ha utilizado frecuentemente en la agricultura y la salud pública para controlar plagas de insectos. Sin embargo, estudios recientes han informado que el piriproxifeno puede tener efectos fisiológicos adversos en organismos no objetivo. Este estudio investigó los efectos de dosis subletales del inse cticida disruptor endocrino piriproxifeno en Drosophila melanogaster Meigen (Diptera: Drosophilidae) como modelo biológico y no objetivo. Los resultados mostraron que el piriproxifeno tuvo un efecto notable en las etapas de desarrollo de los individuos de la generación expuesta. El tratamiento con piriproxifeno acorta significativamente la longevidad adulta de ambos sexos, femenino y masculino. Finalmente, estos resultados sugieren que la capacidad de reproducción en D. melanogaster se ve afectada por la reducción del número de progenie después del tratamiento de la generación de los padres con piriproxifeno. Estos hallazgos de la investigación indican que la exposición subletal al piriproxifeno induce efectos fisiológicos adversos y afecta las tasas de crecimiento de las crías en insectos no objetivo de Drosophila.
Descargas
Citas
Alzahrani, S.M. 2021. Evaluation of triflumuron and pyriproxyfen as alternative candidates to control house fly, Musca domestica L. (Diptera: Muscidae), in Riyadh city, Saudi Arabia. Plos One 16 (4): e0249496.
Azevedo, R.D., K.V.G. Falcão, C.R.D. Assis, R.M.G. Martins, M.C. Araújo, G.T. Yogui et al. 2021. Effects of pyriproxyfen on zebrafish brain mitochondria and acetylcholinesterase. Chemosphere 263: 128029.
Bakr, N.A., M. Tanani, H.A. Hassan and K. Ghoneim. 2021. Insecticidal activity of pyriproxyfen, a juvenoid, and its suppressive effect on growth and development of the black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). Egyptian Academic Journal of Biological Sciences A. Entomology 14 (4): 35-61.
Barathi, S., N. Sabapathi, S. Kandasamy and J. Lee. 2024. Present status of insecticide impacts and eco-friendly approaches for remediation-a review. Environmental Research 117432.
Bauer, J., M. Antosh, C. Chang, C. Schorl, S. Kolli, N. Neretti and S.L. Helfand. 2010. Comparative transcriptional profiling identifies takeout as a gene that regulates life span. Aging 2(5): 298-310.
Bensebaa, F., S. Kilani-Morakchi, N. Aribi and N. Soltani. 2015. Evaluation of pyriproxyfen, a juvenile hormone analog, on Drosophila melanogaster (Diptera: Drosophilidae): Insecticidal activity, ecdysteroid contents and cuticle formation. European Journal of Entomology 112(4): 625-631.
Bezzar-Bendjazia, R., S. Kilani-Morakchi and N. Aribi. 2016. Larval exposure to azadirachtin affects fitness and oviposition site preference of Drosophila melanogaster. Pesticide Biochemistry and Physiology 133: 85-90.
Bin-Jumah, M.N., M.S. Nadeem, S.J. Gilani, F.A. Al-Abbasi, I. Ullah, S.I. Alzarea et al. 2022. Genes and longevity of lifespan. International Journal of Molecular Sciences 23(3): 1499.
Boulahbel, B., M. Ferdenache, K. Sifi and S. Kilani-Morakchi. 2022a. Larval exposure to azadirachtin induced locomotor deficits, and impairs olfactory and gustatory preference in adults of Drosophila melanogaster (Diptera: Drosophilidae). International Journal of Tropical Insect Science 42(4): 2835-2844.
Boulahbel, B., S. Kilani-Morakchi and N. Aribi. 2022b. The influence of pupal exposure to Neem Azal TS, in parents and offspring development rate of Drosophila melanogaster (Diptera: Drosophilidae). Journal of Entomological Research 46(2): 284-290.
Chamseddin, K.H., S.Q. Khan, N.M.L. Nguye, M. Antosh, S.N.S. Morris, S. Kolli et al. 2012. Takeout-dependent longevity is associated with altered Juvenile Hormone signaling. Mechanisms of Ageing and Development 133 (11-12): 637-646.
Chen, Y.W., P.S. Wu, E.C. Yang, Y.S. Nai and Z.Y. Huang. 2016. The impact of pyriproxyfen on the development of honey bee (Apis mellifera L.) colony in field. Journal of Asia-Pacific Entomology 19(3): 589-594.
Cremonez, P.S., J.F. Matsumoto, J.D. Perier, T.P. Dunn, D.O. Pinheiro and P.M. Neves. 2023. Morphological and morphometric parameters of the reproductive organs of Euschistus heros (Hemiptera: Pentatomidae) treated with a sublethal juvenile hormone analog. Journal of Agricultural Science 15(3): 10.
Devillers, J. 2020a. Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environmental Science and Pollution Research 27 (14): 16052-16068.
Devillers, J. 2020b. Fate of pyriproxyfen in soils and plants. Toxics 8(1): 20.
Dubrovsky, E.B. 2005. Hormonal cross talk in insect development. Trends in Endocrinology & Metabolism 16(1): 6-11.
Fine, J.D., L.J. Foster and A. Mcafee. 2023. Indirect exposure to insect growth disruptors affects honey bee (Apis mellifera) reproductive behaviors and ovarian protein expression. Plos One 18 (10): e0292176.
Fowler, M.T., R.S. Lees, J. Fagbohoun, N.S. Matowo, C. Ngufor, N. Protopopoff and A. Spiers. 2021. The Automatic Classification of Pyriproxyfen-Affected Mosquito Ovaries. Insects 12(12): 1134.
Francesena, N. and M.I Schneider. 2018. Selectivity assessment of two biorational insecticides, azadirachtin and pyriproxyfen, in comparison to a neonicotinoid, acetamiprid, on pupae and adults of a Neotropical strain Eretmocerus mundus Mercet. Chemosphere 206: 349-358.
Ghasemi, A., J. Sendi and M. Ghadamyari. 2010. Physiological and biochemical effect of pyriproxyfen on Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Journal of Plant Protection Research 50 (4): 416-422.
Grisales, N., R.S. Lees, J. Maas, J.C. Morgan, D.W. Wangrawa, W.M. Guelbeogo et al. 2021. Pyriproxyfen-treated bed nets reduce reproductive fitness and longevity of pyrethroid-resistant Anopheles gambiae under laboratory and field conditions. Malaria Journal 20(1): 1-17.
Hall, B.S., Y.A. Barnett, J.J. Crofts and N. Chuzhanova. 2019. Identification of novel genes associated with longevity in Drosophila melanogaster-a computational approach. Aging (Albany NY) 11(23): 11244.
Iftikhar, A., F. Hafeez, M. Hafeez, M. Farooq, M. Asif Aziz, M. Sohaib et al. 2020. Sublethal effects of a juvenile hormone analog, Pyriproxyfen on demographic parameters of non-target predator, Hippodamia convergens Guerin-Meneville (Coleoptera: Coccinellidae). Ecotoxicology 29: 1017-1028.
Iqbal, J., H.N. Hussain, M. Latif, M.B. Baig, A.A. Owayss, H.S. Raweh and A.S. Alqarni 2020. A field study investigating the insecticidal efficacy against Diaphorina citri Kuwayama on Kinnow mandarin, Citrus reticulata Blanco trees. Saudi Journal of Biological Sciences 27(5): 1237-1241
Isman, M.B. 2020. Botanical insecticides in the twenty-first century-fulfilling their promise? Annual Review of Entomology 65: 233-249.
Jindra, M. 2019. Where did the pupa come from? The timing of juvenile hormone signalling supports homology between stages of hemimetabolous and holometabolous insects. Philosophical Transactions of the Royal Society B 374 (1783): 20190064.
Jindra, M. and L. Bittova. 2020. The juvenile hormone receptor as a target of juvenoid “insect growth regulators. Archives of Insect Biochemistry and Physiology 103(3): e21615.
Khan, H.A.A. 2021. Pyriproxyfen induces lethal and sublethal effects on biological traits and demographic growth parameters in Musca domestica. Ecotoxicology 30(4): 610-621.
Li, G., H. Lan, Q. Lu, C. He, Y. Wei, D. Mo et al. 2021. The JH-Met2-Kr-h1 pathway is involved in pyriproxyfen-induced defects of metamorphosis and silk protein synthesis in silkworms, Bombyx mori. Pesticide Biochemistry and Physiology 179: 104980.
Li, G., Y. Li, C. He, Y. Wei, K. Cai, Q. Lu et al. 2023a. The promoting effects of pyriproxyfen on autophagy and apoptosis in silk glands of non-target insect silkworm, Bombyx mori. Pesticide Biochemistry and Physiology 196: 105586.
Li, Z., J. Song, G. Jiang, Y. Shang, Y. Jiang, J. Zhang et al. 2023b. Juvenile hormone suppresses the FoxO-takeout axis to shorten longevity in male silkworm. Pesticide Biochemistry and Physiology 192: 105388.
Linford, N.J., C. Bilgir, J. Ro and S.D. Pletcher. 2013. Measurement of lifespan in Drosophila melanogaster. Journal of Visualized Experiments 71: e50068.
López-Otín, C., M.A. Blasco, L. Partridge, M. Serrano and G. Kroemer. 2013. The hallmarks of aging. Cell 153(6): 1194-1217.
Lu, Q., G. Li, H. Lan, D. Yu, X. Yin, W. Yang et al. 2022. Effects of exposure to trace pyriproxyfen on the intestinal bacterial diversity and immune signal pathways of silkworm (Bombyx mori) larvae. Journal of Asia-Pacific Entomology 25(2): 101895.
Maoz, D., T. Ward, M. Samuel, P. Müller, S. Runge-Ranzinger, J. Toledo et al. 2017. Community effectiveness of pyriproxyfen as a dengue vector control method: A systematic review. PLoS Neglected Tropical Diseases 11(7): e0005651.
Naeem, A., F. Hafeez, A. Iftikhar, M. Waaiz, A. Güncan, F. Ullah and F.M. Shah. 2021. Laboratory induced selection of pyriproxyfen resistance in Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae): Cross-resistance potential, realized heritability, and fitness costs determination using age-stage, two-sex life table. Chemosphere 269: 129367.
Pinto, L.Z., M.M. Bitondi and Z.L. Simões 2000. Inhibition of vitellogenin synthesis in Apis mellifera workers by a juvenile hormone analogue, pyriproxyfen. Journal of Insect Physiology 46(2): 153-160.
Qian, H.Y., X. Zhang, G.D. Zhao, H.M. Guo, G. Li and A.Y. Xu 2020. Effects of pyriproxyfen exposure on reproduction and gene expressions in silkworm, Bombyx mori. Insects 11(8): 467.
Riddiford, L.M., P. Cherbas and J.W. Truman. 2000. Ecdysone receptors and their biological actions. Vitam Horm 60: 1-73.
Riddiford, L.M. 1996. Molecular aspects of juvenile hormone action in insect metamorphosis, in Gilbert, L.I. J.R. Tata and B.G. Atkinson (Eds.). Metamorphosis: Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. Academic Press. San Diego, CA, USA. pp. 223-251.
Santos, C.G., F.C. Humann and K. Hartfelder. 2019. Juvenile hormone signaling in insect oogenesis. Current Opinion in Insect Science 31: 43-48.
Scudeler, E.L., S.F. De Carvalho, A.S.G. Garcia, M. Santorum, C.R. Padovani and D.C. Dos Santos. 2022. Midgut and fat body: Multisystemic action of pyriproxyfen on non-target organism Ceraeochrysa claveri (Neuroptera: Chrysopidae). Environmental Pollution 293: 118580.
Sullivan, J.J. and K.S. Goh. 2008. Environmental fate and properties of pyriproxyfen. Journal of Pesticide Science 33(4): 339-350.
Toivonen, J.M. and L. Partridge. 2009. Endocrine regulation of aging and reproduction in Drosophila. Molecular and cellular endocrinology 299(1): 39-50.
Upadhyay, S.K., H. Singh, S. Dixit, V. Mendu and P.C. Verma. 2016. Molecular characterization of vitellogenin and vitellogenin receptor of Bemisia tabaci. PloS One 11 (5): e0155306.
Wątroba, M., I. Dudek, M. Skoda, A. Stangret, P. Rzodkiewicz and D. Szukiewicz. 2017. Sirtuins, epigenetics and longevity. Ageing Research Reviews 40: 11-19.
Wijayaratne, L.K.W., F.H. Arthur and S. Whyard. 2018. Methoprene and control of stored-product insects. Journal of Stored Products Research 76: 161-169.
Wu, Z., L. Yang, Q. He and S. Zhou. 2021. Regulatory mechanisms of vitellogenesis in insects. Frontiers in Cell and Developmental Biology 8: 593613.
Xu, K., H. Lan, C. He, Y. Wei, Q. Lu, K. Cai et al. 2022. Toxicological effects of trace amounts of pyriproxyfen on the midgut of non-target insect silkworm. Pesticide Biochemistry and Physiology 188: 105266.
Yadav, K., S. Dhiman, B.N. Acharya, R.R. Ghorpade and D. Sukumaran. 2019. Pyriproxyfen treated surface exposure exhibits reproductive disruption in dengue vector Aedes aegypti. PLoS Neglected Tropical Diseases 13 (11): e0007842.
Yamamoto, R., H. Bai, A.G. Dolezal, G. Amdam and M. Tatar. 2013. Juvenile hormone regulation of Drosophila aging. BMC biology 11(1): 1-14.
Zhang, X., L. Jin and G. Li. 2023. RNAi-Mediated Functional Analysis Reveals the Regulation of Oocyte Vitellogenesis by Ecdysone Signaling in Two Coleoptera Species. Biology 12(10): 1284.
Zhao, G., X. Zhang, C. Wang, H. Zhang, H. Guo, H. Qian et al. 2020. Effect of pyriproxyfen exposure on cocooning and gene expression in the silk gland of Bombyx mori (Linnaeus, 1758). Ecotoxicology and Environmental Safety 202: 110914.
Zheng, H., N. Wang, J. Yun, H. Xu, J. Yang and S. Zhou. 2022. Juvenile hormone promotes paracellular transport of yolk proteins via remodeling zonula adherens at tricellular junctions in the follicular epithelium. PLoS Genetics 18(6): e1010292.
Zhu, J. 2022. Non-genomic action of juvenile hormone modulates the synthesis of 20-hydroxyecdysone in Drosophila. Science Bulletin 67(2): 117.
Publicado
Cómo citar
Número
Sección
Derechos de autor 2024 Bilel Boulahbel, Fethi Bensebaa, Radia Bezzar-Bendjazia, Maroua Ferdenache, Karima Sifi, Samira Kilani-Morakchi
Está obra está bajo licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Derechos del/de autor/es a partir del año de publicación
Esta obra está bajo la licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación ni de la UCLA. Se autoriza la reproducción total o parcial de los textos aquí publicados, siempre y cuando se cite la fuente completa y la dirección electrónica de esta revista. Los autores(as) tienen el derecho de utilizar sus artículos para cualquier propósito siempre y cuando se realice sin fines de lucro. Los autores(as) pueden publicar en internet o cualquier otro medio la versión final aprobada de su trabajo, luego que esta ha sido publicada en esta revista.
Bioagro se reserva el derecho de realizar modificaciones textuales y ajustes técnicos a las figuras de los manuscritos, de acuerdo con el estilo y especificaciones de la revista.