Plantas de fresa regeneradas in vitro mediante organogénesis directa en diferentes concentraciones de auxinas y citocininas

Autores/as

DOI:

https://doi.org/10.51372/bioagro371.11

Palabras clave:

Clonación, cultivo in vitro, Fragaria x ananassa, vitroplantas

Resumen

La fresa (Fragaria x ananassa) es una especie vegetal de gran importancia económica y agroalimentaria, que se cultiva en regiones agroindustriales de México, como el Bajío. El principal insumo de la producción agrícola son las plantas, cuya primera etapa de multiplicación empieza con la formación de clones por cultivo in vitro a partir de las plantas madre seleccionadas. Sin embargo, diversas características de las plantas regeneradas pueden presentar variaciones que reducen su valor agronómico y comercial. Dicha variabilidad es debida a múltiples factores, aunque destaca el efecto que tienen las combinaciones de auxinas y citocininas, así como sus concentraciones. El objetivo del presente estudio fue evaluar las características de plantas de fresa regeneradas in vitro mediante organogénesis directa ante diferentes concentraciones de auxinas y citocininas.  Los explantes se obtuvieron de meristemos apicales en los estolones de plantas madre de la variedad Camino Real. Se utilizaron 21 tratamientos de auxinas (AIB y 2,4-D) y citocininas (BAP y cinetina) para evaluar la organogénesis. El mayor número de vitroplantas se obtuvo con la combinación del AIB y el BAP a 0,4 mg·L-1, con una tasa de regeneración promedio de 68,3 %. En dicho tratamiento se presentaron la vitroplantas con mejor desarrollo y alta respuesta antioxidante. La mayor concentración promedio de prolina de 1,7 µg mL-1, en el tratamiento control sin auxinas ni citocininas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Al-Khateeb, A.A., M.E. Solliman, H.A.A. Mohasseb y W.F. Shehata. 2014. The role of hormones auxins in the in-vitro root formation of chandler strawberry (Fragaria x ananssa Duch.). International Journal of Academic Research 6: 225230.

Al-Madhagi, I. 2023. The habit of strawberry flowering is the key for runner propagation, where the photoperiod is the main environmental factor-A review. Advances in Horticultural Science 37(4): 433-449.

Anuradha, S.K., K.P. Anil, K. Subhash y B. Sandhya. 2016. Production of strawberry plant by in vitro propagation. Research on Crops 17(3): 545-549.

Bates, L.S., R.P. Waldren y I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39205-207.

Brand-Williams, W., M.E. Cuvelier y C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT Food Science and Technology 28(1): 25-30.

Cappelletti, R., S. Sabbadini y B. Mezzetti. 2016. The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Scientia Horticulturae 207: 117-124.

Chaki, M., J.C. Begara-Morales y J.B. Barroso. 2020. Oxidative stress in plants. Antioxidants 9(6): 481.

Claeys, H., S. Van Landeghem, M. Dubois, K. Maleux y D. Inzé. 2014. What is stress? Dose-response effects in commonly used in vitro stress assays. Plant physiology 165(2): 519-527.

Danial, G.H., D.A. Ibrahim y M.S. Omer. 2016. Response of running shoot tips of strawberry (Fragaria x ananasa) for in vitro Propagation in Kurdistan region of Iraq. International Journal of Environment, Agriculture and Biotechnolgy 1(2): 164-169.

de Castro-Marcato, A.C., C.P. de Souza y C.S. Fontanetti. 2017. Herbicide 2,4-D: a review of toxicity on non-target organisms. Water, Air, & Soil Pollution 228: 1-12.

Díaz-Rueda, P., M. Cantos-Barragán y J.M. Colmenero-Flores. 2021. Growth quality and development of olive plants cultured in-vitro under different illumination regimes. Plants 10(10): 2214.

Dutta, C. 2022. Effect of different plant growth regulators on in-vitro regeneration in varieties of strawberry. International Journal of Environment and Climate Change 12(11): 1178-1187.

ElKichaoui, A.Y. 2014. In vitro propagation of strawberry (Fragaria x annanasa Duch.) through organogenesis via runner tips. Ann Plant Sci 3(3): 619-627.

Espinosa-Leal, C.A., C.A. Puente-Garza y S. García-Lara. 2018. In vitro plant tissue culture: means for production of biological active compounds. Planta 248: 1-18.

FAOSTAT. 2022. Crop and livestock products. Food and agricultura organization. Consultado el 14 de noviembre del 2024.

Forlani, G. y D. Funck. 2020. A specific and sensitive enzymatic assay for the quantitation of L-proline. Frontiers in Plant Science 11: 582026.

Fragoso-Monfort, L.E., S.K. Vilela-Bertolucci, A. Fabri-Lima, A. Alvares-de Carvalho, A. Mohammed, A.F. Blank y J.E.B. Pereira-Pinto. 2018. Effects of plant growth regulators, different culture media and strength MS on production of volatile fraction composition in

shoot cultures of Ocimum basilicum. Industrial Crops and Products 116: 231-239.

Gao, C., T.H. Yosida, y D. Li. 2023. Root architecture and visualization model of cotton group with different planting spacing under local irrigation. In: C., Gao, T.H., Yosida and D. Li, Frontiers in Plant Science. Frontiers Media 14.

Giampieri, F., T.Y. Forbes-Hernandez, M. Gasparrini, J.M. Alvarez-Suarez, S. Afrin, S. Bompadre et al. 2015. Strawberry as a health promoter: an evidence based review. Food & Function 6(5): 1386-1398.

Gomes, G.L.B. y K.C. Scortecci. 2021. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. Plant Biology 23(6): 894-904.

Gonzales-Arteaga, J.J., J. Rodríguez-Layza, L.C. Romero-Rivas, A. Párraga-Quintanilla y J.A. Olivera-Soto. 2023. Role of BA and IAA on regeneration and shoot proliferation in vitro of three strawberry (Fragaria x ananassa Duch.) varieties. Agroindustrial Science 13(2): 93-102.

Gupta, R., L. Pizarro, M. Leibman-Markus, I. Marash y M. Bar. 2020. Cytokinin response induces immunity and fungal pathogen resistance, and modulates trafficking of the PRR LeEIX2 in tomato. Molecular Plant Pathology 21(10): 1287-1306.

Hussein, A.E., A.Y. El-Kerdany y K.M Afifi. 2016. Effect of drought and salinity stresses on two strawberry cultivars during their regeneration in vitro. International Journal of Innovative Science Engineering and Technology 4(8): 83-93.

Ibrahim, M.H., R. Nulit y S.Z. Sakimin. 2022. Influence of drought stress on growth, biochemical changes and leaf gas exchange of strawberry (Fragaria x ananassa Duch.) in Indonesia. AIMS Agriculture and Food 7(1): 37-60.

Katel, S., H.R. Mandal, S. Kattel, S.P.S. Yadav y B.S. Lamshal. 2022. Impacts of plant growth regulators in strawberry plant: A review. Heliyon 8(12).

Kavi-Kishor, P.B., P. Hima-Kumari, M.S.L. Sunita y N. Sreenivasulu. 2015. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front in Plant Science 6: 148328.

Khromova, T.M. y O.V. Matsneva. 2022. Optimization of berry crop genotype regeneration systems at the in vitro crop initiation stage. EDP Science 47: 04004.

Kim, H.J., J.N. Lee, M.J. Choi y J.T. Suh. 2019. Comparison of in vitro propagation and occurrence of morphological and genetic variation in strawberry tissue culture with various plant hormone treatments. Journal of Plant Biotechnology 46(2): 106-113.

Kurepa, J. y J.A. Smalle. 2022. Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. International Journal of Molecular Science 23(4): 1933.

Lapiz-Culqui, Y.K., E.H. Huamán, J.C.N. Chávez y M. Oliva. 2020. Efecto de reguladores de crecimiento en el establecimiento in vitro de (Vasconcellea sp.), a partir de meristemos apicales en Chachapoyas, Amazonas. In: Y.K., Lapiz-Culqui, E.H., Huamán, J.C.N., Chávez y M. Oliva. Revista de Investigación de Agroproducción Sustentable 4(1): 43-49.

Mahmoud, K.B., A. Najar, E. Jedid, N. Jemai y A. Jemmali. 2017. Tissue culture techniques for clonal propagation, viral sanitation and germplasm improvement in strawberry (Fragaria x ananassa Duch.). Journal of New Science 47(2): 2564-2576.

Mäkelä, P.S., K. Jokinen y K. Himanen. 2019. Roles of endogenous glycinebetaine in plant abiotic stress responses. In: Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants: Recent Advances and Future Perspectives. Springer. pp. 153-173.

Martínez-Cruz, O. y O. Paredes-López. 2014. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. Journal of Chromatography A 1346: 43-48.

Mozafari, A.A., F. Havas y N. Ghaderi. 2018. Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria x ananassa Duch.) to cope with drought stress. Plant Cell, Tissue and Organ Culture 132: 511-523.

Naing, A.H., S.H. Kim, M.Y. Chung, S.K. Park y C.K. Kim. 2019. In vitro propagation method for production of morphologically and genetically stable plants of different strawberry cultivars. Plant methods 15: 1-10.

Nieto, J.A., S. Santoyo, M. Prodanov, G. Reglero y L. Jaime. 2020. Valorisation of grape stems as a source of phenolic antioxidants by using a sustainable extraction methodology. Foods 9(5): 604.

Palei, S., A.K. Das y G.R. Rout. 2015. In vitro studies of strawberry - an important fruit crop: a review. The Journal of Plant Science Research 31(2): 115.

Piwowarczyk, B., K. Tokarz, W. Makowski y A. Łukasiewicz. 2017. Different acclimatization mechanisms of two grass pea cultivars to osmotic stress in in vitro culture. Acta Physiologiae Plantarum 39(4): 96.

Plihalova, L., H. Vylíčilová, K. Doležal, L. Zahajska, M. Zatloukal y M. Strnad. 2016. Synthesis of aromatic cytokinins for plant biotechnology. New biotechnology 33(5): 614-624.

Poothong, S. 2020. Optimization of minerals and plant growth regulators for micropropagation of strawberry ‘Pharachatan 80’. Health Science and Technology Reviews 13(2): 5-17.

Rahman, W., S. Zohora, A.I. Talukder y O. Kayess. 2015. Effect of different hormone combinations on callus induction and plant regeneration of strawberry. International Journal of Advanced Research 3(6): 1244-1250.

Rehman, A.U., F. Bashir, F. Ayaydin, Z. Kóta, T. Páli y I. Vass. 2021. Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids. Physiologia plantarum 172(1): 7-18.

Rodrigues-Martins, J.P., M. Krysztof-Wawrzyniak, J.M. Ley-López, E. Marzena-Kalemba, M. Merlo-Mendes y P. Chmielarz. 2022. 6-Benzylaminopurine and kinetin modulations during in vitro propagation of Quercus robur (L.): an assessment of anatomical, biochemical, and physiological profiling of shoots. Plant Cell, Tissue and Organ Culture 151(1): 149-164.

Rukh, S., A. Kazmi, G. Nabi, M. Irshad, A. Ali, S. Muhammad et al. 2023. Improvement of in vitro regeneration frequency, polyphenolic and antioxidant profile of Strawberry (Fragaria ananassa Cv. Chandler) via indirect organogenesis. Journal of Pure and applied Agriculture 8(1).

Sarıdas, M.A., G. Baktemur, H. Taşkın y S.P. Kargi. 2021. Effect of plant hormones on micropropagation potential of superior strawberry genotypes and their parents via shoot-tip culture. Acta Scientiarum Polonorum Hortorum Cultus 20(3): 63-75.

Sahoo, G., S.L. Swamy, A.K. Singh y A. Mishra. 2021. Propagation of Pongamia pinnata (L.) Pierre: Effect of auxins, age, season and C/N ratio on rooting of stem cuttings. Trees, Forest and People 5: 100091.

Sachdev, S., S.A. Ansari, M.I. Ansari, M. Fujita y M. Hasanuzzaman. 2021. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 10(2): 277.

Salvador, T.D.L., T.D.L. Salvador, E.E.P.D. Lemos, P.G. Barros y R.D.S Campos. 2014. Enraizamento de estacas de pinheira (Annona squamosa L.) com ácido indolbutírico. Revista Brasileira de Fruticultura 36: 310-314.

Shanthala, A.A., A. Dilkalal y T.G. Umesh. 2021. An efficient in vitro approach for direct and callus mediated regeneration of Curcuma karnatakensis – an endemic plant of Karnataka. Journal of Herbs, Spices & Medicinal Plants 27(3): 229-241.

Sehrawat, S.K., A.K. Poonia, S. Kajla y S. Bhat. 2016. Production of strawberry plant by in vitro propagation. Research on Crops 17(3): 545-549.

Selim, S., M. Abuelsoud, M.M. Al‐Sanea y H. AbdElgawad. 2021. Elevated CO2 differently suppresses the arsenic oxide nanoparticles-induced stress in C3 (Hordeum vulgare) and C4 (Zea maize) plants via altered homeostasis in metabolites specifically proline and anthocyanin metabolism. In: S., Selim, W., Abuelsoud, M.M., Al‐Sanea and H., AbdElgawad. Plant Physiology and Biochemistry. Elsevier BV 166: 235-245.

SIAP. 2024. Servicio de Información Agroalimentaria y Pesquera, Producción agrícola, Secretaría de Agricultura y Desarrollo Rural. Consultado el 30 de octubre del 2024.

Suraya, A.A., A. Misran y M. Hakiman. 2021. The efficient and easy micropropagation protocol of Phyllanthus niruri. Plants 10(10): 2141.

Valliath, A.S. y R. Mondal. 2023. Micropropagation of Strawberry Crop (Fragaria ananassa): A Review. Bhartiya Krishi Anusandhan Patrika 38(1): 41-44.

Vilkickytė, G. y L. Raudonė. 2021. Phenological and Geographical Effects on Phenolic and Triterpenoid Content in Vaccinium vitis-idaea L. Leaves. In: G., Vilkickytė and L., Raudonė, Plants. Multidisciplinary Digital Publishing Institute 10(10): 1986.

Publicado

2025-01-01

Cómo citar

Hernández-Ruiz, J., Rangel-Castillo, A. E., Laguna-Estrada, M. I., Alejandro-Rojas, G. J., Mireles-Arriaga, A. I., & Ruiz-Nieto, J. E. (2025). Plantas de fresa regeneradas in vitro mediante organogénesis directa en diferentes concentraciones de auxinas y citocininas. Bioagro, 37(1), 123-134. https://doi.org/10.51372/bioagro371.11

Número

Sección

Artículos