Dental decay: from genetic to Omics
DOI:
https://doi.org/10.5281/zenodo.14739181Keywords:
dental caries, genetics, genomics, multiomics, integrative dentistryAbstract
Introduction: Dental caries is among the most common chronic diseases, influenced by genetic, phenotypic, and environmental factors. In recent decades, research has advanced from traditional approaches to the adoption of "omics" technologies, enabling a more detailed and personalized understanding of the disease. Objective: To review the evolution of dental caries research, from genetics to advancements in "omics" technologies, and examine how these tools are transforming caries research and treatment in a personalized manner. Methodology: A comprehensive literature search was conducted in PubMed and Scopus for studies related to dental caries, focusing on genetic research, environmental factors, and the impact of "omics" technologies (genomics, metagenomics, metabolomics, and proteomics) in the dental field. Results: Genetic factors were found to play a key role in susceptibility to caries, but the influence of environmental factors, such as diet and oral microbiota, is equally important. "Omics" technologies have enabled the identification of molecular profiles that explain variability in disease response and treatment, paving the way for personalized medicine. Advances in genomics and proteomics are facilitating more precise diagnoses and tailored treatments. Conclusion: Advances in "omics" technologies are revolutionizing the study and treatment of dental caries, providing a more comprehensive and personalized approach that integrates genetic, phenotypic, and environmental factors.
Downloads
References
Opal S, Garg S, Jain J, Walia I. Genetic factors affecting dental caries risk. Aust Dent J. 2015;60(1):2-11. Doi: 10.1111/adj.12262
Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Primer. 2017;3(1):1-16. Doi: 10.1038/nrdp.2017.30
Yadav S. The Wholeness in Suffix -omics, -omes, and the Word Om. J Biomol Tech. 2008; 18:277.
Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell. 2013;155(1):27-38. Doi: 10.1016/j.cell.2013.09.006
Tanner ACR, Kressirer CA, Faller LL. Understanding Caries From the Oral Microbiome Perspective. J Calif Dent Assoc. 2016;44(7):437-46. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27514155/
Werneck R, Mira M, Trevilatto P. A critical review: an overview of genetic influence on dental caries. Oral Dis. 2010;16(7):613-23. Doi: 10.1111/j.1601-0825.2010.01675.x
Seppä L, Kärkkäinen S, Hausen H. Caries Trends 1992–1998 in Two Low–Fluoride Finnish Towns Formerly with and without Fluoridation. Caries Res. 2000;34(6):462-8. Doi: 10.1159/000016624
Galton F. The History of Twins, As A Criterion Of The Relative Powers of Nature And Nurture1,2. Int J Epidemiol. 2012;41(4):905-11. Doi: 10.1093/ije/dys097
Goodman HO, Luke JE, Rosen S, Hackel E. Heritability in dental caries, certain oral microflora and salivary components. Am J Hum Genet. 1959;11(3):263-73. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932006/
Bretz WA, Corby PMA, Melo MR, Coelho MQ, Costa SM, Robinson M, et al. Heritability estimates for dental caries and sucrose sweetness preference. Arch Oral Biol. 2006;51(12):1156-60. Doi: 10.1016/j.archoralbio.2006.06.003
Vieira AR, Marazita ML, Goldstein-McHenry T. Genome-wide scan finds suggestive caries loci. J Dent Res. 2008;87(5):435-9. Doi: 10.1177/154405910808700506
Shaffer JR, Wang X, Feingold E, Lee M, Begum F, Weeks DE, et al. Genome-wide association scan for childhood caries implicates novel genes. J Dent Res. 2011;90(12):1457-62. Doi: 10.1177/0022034511422910
Moradian-Oldak J. Protein- mediated enamel mineralization. Front Biosci J Virtual Libr. 1 de junio de 2012;17:1996-2023. Doi: 10.2741/4034
Luo W, Wen X, Wang HJ, MacDougall M, Snead ML, Paine ML. In vivo overexpression of tuftelin in the enamel organic matrix. Cells Tissues Organs. 2004;177(4):212-20. Doi: 10.1159/000080134
Zhang C, Han Y, Miao L, Yue Z, Xu M, Liu K, et al. Human β-defensins are correlated with the immune infiltration and regulated by vitamin D3 in periodontitis. J Periodontal Res. 2023; 58(5): 986-96. Doi: 10.1111/jre.13159
Kim JW, Hu JCC, Lee JI, Moon SK, Kim YJ, Jang KT, et al. Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type II. Hum Genet. 2005;116(3):186-91. Doi: 10.1007/s00439-004-1223-6
Shimizu T, Ho B, Deeley K, Briseño-Ruiz J, Faraco IM, Schupack BI, et al. Enamel formation genes influence enamel microhardness before and after cariogenic challenge. PloS One. 2012;7(9): e45022. Doi: 10.1371/journal.pone.0045022
Kang SW, Yoon I, Lee HW, Cho J. Association between AMELX polymorphisms and dental caries in Koreans. Oral Dis. 2011;17(4):399-406. Doi: 10.1111/j.1601-0825.2010. 01766.x
Tannure PN, Küchler EC, Falagan-Lotsch P, Amorim LMF, Raggio Luiz R, Costa MC, et al. MMP13 polymorphism decreases risk for dental caries. Caries Res. 2012;46(4):401-7. Doi: 10.1002/hsr2.1708
Wendell S, Wang X, Brown M, Cooper ME, DeSensi RS, Weyant RJ, et al. Taste Genes Associated with Dental Caries. J Dent Res. 2010;89(11):1198-202. Doi: 10.1177/0022034510381502
Wang X, Willing MC, Marazita ML, Wendell S, Warren JJ, Broffitt B, et al. Genetic and Environmental Factors Associated with Dental Caries in Children: The Iowa Fluoride Study. Caries Res. 2012;46(3):177-84. Doi: 10.1159/000337282
Bagherian A, Nematollahi H, Afshari JT, Moheghi N. Comparison of allele frequency for HLA-DR and HLA-DQ between patients with ECC and caries-free children. J Indian Soc Pedod Prev Dent. marzo de 2008;26(1):18-21. Doi: 10.4103/0970-4388.40316
Garred P. Mannose-binding lectin genetics: from A to Z. Biochem Soc Trans. 2008;36(Pt 6):1461-6. Doi: 10.1042/BST0361461
Ozturk A, Famili P, Vieira AR. The antimicrobial peptide DEFB1 is associated with caries. J Dent Res. 2010;89(6):631-6. Doi: 10.1177/002203451036449
Lenander-Lumikari M, Loimaranta V. Saliva and dental caries. Adv Dent Res. 2000;14:40-7. Doi: 10.1177/08959374000140010601
Jonasson A, Eriksson C, Jenkinson HF, Källestål C, Johansson I, Strömberg N. Innate immunity glycoprotein gp-340 variants may modulate human susceptibility to dental caries. BMC Infect Dis. 11 de junio de 2007;7:57. Doi: 10.1186/1471-2334-7-57
Azevedo LF, Pecharki GD, Brancher JA, Cordeiro CA, Medeiros KG dos S, Antunes AA, et al. Analysis of the association between lactotransferrin (LTF) gene polymorphism and dental caries. J Appl Oral Sci Rev FOB. 2010;18(2):166-70. Doi: 10.1590/S1678-77572010000200011
Nascimento MM, Zaura E, Mira A, Takahashi N, ten Cate JM. Second Era of OMICS in Caries Research: Moving Past the Phase of Disillusionment. J Dent Res. 2017;96(7):733-40. Doi: 10.1177/0022034517701902
Vincent AT, Derome N, Boyle B, Culley AI, Charette SJ. Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money. J Microbiol Methods. 2017;138:60-71. Doi: 10.1016/j.mimet.2016.02.016
Simón-Soro A, Mira A. Solving the etiology of dental caries. Trends Microbiol. febrero de 2015;23(2):76-82. Doi: 10.1016/j.tim.2014.10.010
31.Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PloS One. 2012;7(10): e47722. Doi: 10.1371/journal.pone.0047722
Camelo-Castillo A, Benítez-Páez A, Belda-Ferre P, Cabrera-Rubio R, Mira A. Streptococcus dentisani sp. nov., a novel member of the mitis group. Int J Syst Evol Microbiol. enero de 2014;64(Pt 1):60-5. Doi: 10.1099/ijs.0.054098-0
López-Santacruz HD, López-López A, Revilla-Guarinos A, Camelo-Castillo A, Esparza-Villalpando V, Mira A, et al. Streptococcus dentisani is a common inhabitant of the oral microbiota worldwide and is found at higher levels in caries-free individuals. Int Microbiol Off J Span Soc Microbiol. 2021;24(4):619-29. Doi: 10.1007/s10123-021-00222-9
Conrads G, Westenberger J, Lürkens M, Abdelbary MMH. Isolation and Bacteriocin-Related Typing of Streptococcus dentisani. Front Cell Infect Microbiol. 2019;9:110. Doi: 10.3389/fcimb.2019.00110
Huang Y, Zhao X, Cui L, Huang S. Metagenomic and Metatranscriptomic Insight Into Oral Biofilms in Periodontitis and Related Systemic Diseases. Front Microbiol. 2021;12: 728585. Disponible en: 10.3389/fmicb.2021.728585
Jo JH, Kennedy EA, Kong HH. Research Techniques Made Simple: Bacterial 16S Ribosomal RNA Gene Sequencing in Cutaneous Research. J Invest Dermatol. 2016;136(3):e23-7. Doi: 10.1016/j.jid.2016.01.005
Benítez-Páez A, Belda-Ferre P, Simón-Soro A, Mira A. Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genomics. 2014; 15:311. Doi: 10.1186/1471-2164-15-311
Ojeda-Garcés JC, Oviedo-García E, Salas LA. Streptococcus mutans y caries dental. CES Odontol. enero de 2013;26(1):44-56. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-971X2013000100005
Belda-Ferre P, Williamson J, Simón-Soro Á, Artacho A, Jensen ON, Mira A. The human oral metaproteome reveals potential biomarkers for caries disease. Proteomics. 2015;15(20):3497-507. Doi: 10.1002/pmic.201400600
Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008;46(4):1407-17. Doi: 10.1128/JCM.01410-07
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852-7. Doi: 10.1038/s41587-019-0209-9
Jagtap PD, Blakely A, Murray K, Stewart S, Kooren J, Johnson JE, et al. Metaproteomic analysis using the Galaxy framework. Proteomics. octubre de 2015;15(20):3553-65.
Takahashi N, Washio J, Mayanagi G. Metabolomic approach to oral biofilm characterization—A future direction of biofilm research. J Oral Biosci. 2012;54(3):138-43. Doi: 10.1002/pmic.201500074
Belstrøm D, Jersie-Christensen RR, Lyon D, Damgaard C, Jensen LJ, Holmstrup P, et al. Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls. PeerJ. 2016;4:e2433. Doi: 10.7717/peerj.2433. eCollection 2016
Moussa DG, Ahmad P, Mansour TA, Siqueira WL. Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era. Front Cell Infect Microbiol. 2022;12:887907. Doi: 10.3389/fcimb.2022.887907
Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol Med. 2015;21(3):172-83. Doi: 10.1016/j.molmed.2014.11.004
Nibali L, Di Iorio A, Tu YK, Vieira AR. Host genetics role in the pathogenesis of periodontal disease and caries. J Clin Periodontol. marzo de 2017;44 Suppl 18:S52-78. Doi: 10.1111/jcpe.12639
Tong X, Hou S, Ma M, Zhang L, Zou R, Hou T, et al. The integration of transcriptome-wide association study and mRNA expression profiling data to identify candidate genes and gene sets associated with dental caries. Arch Oral Biol. 2020;118:104863. Doi: 10.1016/j.archoralbio.2020.104863
Laputková G, Schwartzová V, Bánovčin J, Alexovič M, Sabo J. Salivary Protein Roles in Oral Health and as Predictors of Caries Risk. Open Life Sci. enero de 2018;13:174-200. Doi: 10.1515/biol-2018-0023
Duran-Pinedo AE, Frias-Lopez J. Beyond microbial community composition: functional activities of the oral microbiome in health and disease. Microbes Infect. 2015;17(7):505-16. Doi: 10.1016/j.micinf.2015.03.014
Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16(12):745-59.
Ingendoh-Tsakmakidis A, Mikolai C, Winkel A, Szafrański SP, Falk CS, Rossi A, et al. Commensal and pathogenic biofilms differently modulate peri-implant oral mucosa in an organotypic model. Cell Microbiol. octubre de 2019;21(10):e13078. Doi: 10.1038/s41579-018-0089-x
Kraikivski P, Chen KC, Laomettachit T, Murali TM, Tyson JJ. From START to FINISH: computational analysis of cell cycle control in budding yeast. NPJ Syst Biol Appl. 2015; 1:15016. Doi: 10.1038/npjsba.2015.16
Lv Z, Fu K, Zhang Q. Advances of exosomes-based applications in diagnostic biomarkers for dental disease and dental regeneration. Colloids Surf B Biointerfaces. 2023; 229:113429. Doi: 10.1016/j.colsurfb.2023.113429.
Sonis ST. Genomics, Personalized Medicine and Oral Disease. Springer Cham [citado 5 de enero de 2024]. p. 408. Doi: 10.1007/978-3-319-17942-1
Published
How to Cite
Issue
Section
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Derechos del/de autor/es a partir del año de publicación
Esta obra está bajo la licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación ni de la UCLA. Se autoriza la reproducción total o parcial de los textos aquí publicados, siempre y cuando se cite la fuente completa y la dirección electrónica de esta revista. Los autores(as) tienen el derecho de utilizar sus artículos para cualquier propósito siempre y cuando se realice sin fines de lucro. Los autores(as) pueden publicar en internet o cualquier otro medio la versión final aprobada de su trabajo, luego que esta ha sido publicada en esta revista.