Cárie dentária: da genética à ômica

Autores

  • José Amable Araujo Blanco Universidad del Magdalena, Santa Marta
  • Midian Clara Castillo Pedraza Universidad del Magdalena. Santa Marta
  • Jorge Homero Wilches Visbal Universidad del Magdalena. Santa Marta

DOI:

https://doi.org/10.5281/zenodo.14739181

Palavras-chave:

cárie dentária, genética, genômica, multiômica, odontologia integrativa

Resumo

Introdução: A cárie dentária é uma das doenças crônicas mais comuns, influenciada por fatores genéticos, fenotípicos e ambientais. Nas últimas décadas, a pesquisa avançou das abordagens tradicionais para a adoção de tecnologias "ômicas", que permitem uma compreensão mais detalhada e personalizada da doença. Objetivo: Revisar a evolução do estudo da cárie dentária, da genética aos avanços nas tecnologias "ômicas", e examinar como essas ferramentas estão transformando a pesquisa e o tratamento personalizado da cárie. Metodologia: Foi realizada uma busca abrangente da literatura científica no PubMed e Scopus sobre estudos relacionados à cárie dentária, com foco na pesquisa genética, fatores ambientais e no impacto das tecnologias "ômicas" (genômica, metagenômica, metabolômica e proteômica) na área odontológica. Resultados: Fatores genéticos desempenham um papel fundamental na suscetibilidade à cárie, mas a influência de fatores ambientais, como dieta e microbiota oral, é igualmente importante. As tecnologias ômicas tornaram possível identificar perfis moleculares que explicam a variabilidade na resposta à doença e ao tratamento, abrindo caminho para uma abordagem de medicina personalizada. Avanços em genômica e proteômica, em particular, estão facilitando diagnósticos mais precisos e tratamentos mais direcionados. Conclusão: Os avanços nas tecnologias "ômicas" estão revolucionando o estudo e o tratamento da cárie dentária, proporcionando uma abordagem mais abrangente e personalizada que integra fatores genéticos, fenotípicos e ambientais.

 

Downloads

Não há dados estatísticos.

Biografia do Autor

José Amable Araujo Blanco, Universidad del Magdalena, Santa Marta

Profesor de Microbiología, programa de Odontología. Universidad del Magdalena, Santa Marta, Colombia

Midian Clara Castillo Pedraza, Universidad del Magdalena. Santa Marta

Profesora de Biomateriales, Programa de Odontología, Universidad del Magdalena. Santa Marta, Colombia

Jorge Homero Wilches Visbal, Universidad del Magdalena. Santa Marta

Profesor de Biofísica, Programa de Odontología, Universidad del Magdalena. Santa Marta, Colombia

Referências

Opal S, Garg S, Jain J, Walia I. Genetic factors affecting dental caries risk. Aust Dent J. 2015;60(1):2-11. Doi: 10.1111/adj.12262

Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Primer. 2017;3(1):1-16. Doi: 10.1038/nrdp.2017.30

Yadav S. The Wholeness in Suffix -omics, -omes, and the Word Om. J Biomol Tech. 2008; 18:277.

Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell. 2013;155(1):27-38. Doi: 10.1016/j.cell.2013.09.006

Tanner ACR, Kressirer CA, Faller LL. Understanding Caries From the Oral Microbiome Perspective. J Calif Dent Assoc. 2016;44(7):437-46. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27514155/

Werneck R, Mira M, Trevilatto P. A critical review: an overview of genetic influence on dental caries. Oral Dis. 2010;16(7):613-23. Doi: 10.1111/j.1601-0825.2010.01675.x

Seppä L, Kärkkäinen S, Hausen H. Caries Trends 1992–1998 in Two Low–Fluoride Finnish Towns Formerly with and without Fluoridation. Caries Res. 2000;34(6):462-8. Doi: 10.1159/000016624

Galton F. The History of Twins, As A Criterion Of The Relative Powers of Nature And Nurture1,2. Int J Epidemiol. 2012;41(4):905-11. Doi: 10.1093/ije/dys097

Goodman HO, Luke JE, Rosen S, Hackel E. Heritability in dental caries, certain oral microflora and salivary components. Am J Hum Genet. 1959;11(3):263-73. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932006/

Bretz WA, Corby PMA, Melo MR, Coelho MQ, Costa SM, Robinson M, et al. Heritability estimates for dental caries and sucrose sweetness preference. Arch Oral Biol. 2006;51(12):1156-60. Doi: 10.1016/j.archoralbio.2006.06.003

Vieira AR, Marazita ML, Goldstein-McHenry T. Genome-wide scan finds suggestive caries loci. J Dent Res. 2008;87(5):435-9. Doi: 10.1177/154405910808700506

Shaffer JR, Wang X, Feingold E, Lee M, Begum F, Weeks DE, et al. Genome-wide association scan for childhood caries implicates novel genes. J Dent Res. 2011;90(12):1457-62. Doi: 10.1177/0022034511422910

Moradian-Oldak J. Protein- mediated enamel mineralization. Front Biosci J Virtual Libr. 1 de junio de 2012;17:1996-2023. Doi: 10.2741/4034

Luo W, Wen X, Wang HJ, MacDougall M, Snead ML, Paine ML. In vivo overexpression of tuftelin in the enamel organic matrix. Cells Tissues Organs. 2004;177(4):212-20. Doi: 10.1159/000080134

Zhang C, Han Y, Miao L, Yue Z, Xu M, Liu K, et al. Human β-defensins are correlated with the immune infiltration and regulated by vitamin D3 in periodontitis. J Periodontal Res. 2023; 58(5): 986-96. Doi: 10.1111/jre.13159

Kim JW, Hu JCC, Lee JI, Moon SK, Kim YJ, Jang KT, et al. Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type II. Hum Genet. 2005;116(3):186-91. Doi: 10.1007/s00439-004-1223-6

Shimizu T, Ho B, Deeley K, Briseño-Ruiz J, Faraco IM, Schupack BI, et al. Enamel formation genes influence enamel microhardness before and after cariogenic challenge. PloS One. 2012;7(9): e45022. Doi: 10.1371/journal.pone.0045022

Kang SW, Yoon I, Lee HW, Cho J. Association between AMELX polymorphisms and dental caries in Koreans. Oral Dis. 2011;17(4):399-406. Doi: 10.1111/j.1601-0825.2010. 01766.x

Tannure PN, Küchler EC, Falagan-Lotsch P, Amorim LMF, Raggio Luiz R, Costa MC, et al. MMP13 polymorphism decreases risk for dental caries. Caries Res. 2012;46(4):401-7. Doi: 10.1002/hsr2.1708

Wendell S, Wang X, Brown M, Cooper ME, DeSensi RS, Weyant RJ, et al. Taste Genes Associated with Dental Caries. J Dent Res. 2010;89(11):1198-202. Doi: 10.1177/0022034510381502

Wang X, Willing MC, Marazita ML, Wendell S, Warren JJ, Broffitt B, et al. Genetic and Environmental Factors Associated with Dental Caries in Children: The Iowa Fluoride Study. Caries Res. 2012;46(3):177-84. Doi: 10.1159/000337282

Bagherian A, Nematollahi H, Afshari JT, Moheghi N. Comparison of allele frequency for HLA-DR and HLA-DQ between patients with ECC and caries-free children. J Indian Soc Pedod Prev Dent. marzo de 2008;26(1):18-21. Doi: 10.4103/0970-4388.40316

Garred P. Mannose-binding lectin genetics: from A to Z. Biochem Soc Trans. 2008;36(Pt 6):1461-6. Doi: 10.1042/BST0361461

Ozturk A, Famili P, Vieira AR. The antimicrobial peptide DEFB1 is associated with caries. J Dent Res. 2010;89(6):631-6. Doi: 10.1177/002203451036449

Lenander-Lumikari M, Loimaranta V. Saliva and dental caries. Adv Dent Res. 2000;14:40-7. Doi: 10.1177/08959374000140010601

Jonasson A, Eriksson C, Jenkinson HF, Källestål C, Johansson I, Strömberg N. Innate immunity glycoprotein gp-340 variants may modulate human susceptibility to dental caries. BMC Infect Dis. 11 de junio de 2007;7:57. Doi: 10.1186/1471-2334-7-57

Azevedo LF, Pecharki GD, Brancher JA, Cordeiro CA, Medeiros KG dos S, Antunes AA, et al. Analysis of the association between lactotransferrin (LTF) gene polymorphism and dental caries. J Appl Oral Sci Rev FOB. 2010;18(2):166-70. Doi: 10.1590/S1678-77572010000200011

Nascimento MM, Zaura E, Mira A, Takahashi N, ten Cate JM. Second Era of OMICS in Caries Research: Moving Past the Phase of Disillusionment. J Dent Res. 2017;96(7):733-40. Doi: 10.1177/0022034517701902

Vincent AT, Derome N, Boyle B, Culley AI, Charette SJ. Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money. J Microbiol Methods. 2017;138:60-71. Doi: 10.1016/j.mimet.2016.02.016

Simón-Soro A, Mira A. Solving the etiology of dental caries. Trends Microbiol. febrero de 2015;23(2):76-82. Doi: 10.1016/j.tim.2014.10.010

31.Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PloS One. 2012;7(10): e47722. Doi: 10.1371/journal.pone.0047722

Camelo-Castillo A, Benítez-Páez A, Belda-Ferre P, Cabrera-Rubio R, Mira A. Streptococcus dentisani sp. nov., a novel member of the mitis group. Int J Syst Evol Microbiol. enero de 2014;64(Pt 1):60-5. Doi: 10.1099/ijs.0.054098-0

López-Santacruz HD, López-López A, Revilla-Guarinos A, Camelo-Castillo A, Esparza-Villalpando V, Mira A, et al. Streptococcus dentisani is a common inhabitant of the oral microbiota worldwide and is found at higher levels in caries-free individuals. Int Microbiol Off J Span Soc Microbiol. 2021;24(4):619-29. Doi: 10.1007/s10123-021-00222-9

Conrads G, Westenberger J, Lürkens M, Abdelbary MMH. Isolation and Bacteriocin-Related Typing of Streptococcus dentisani. Front Cell Infect Microbiol. 2019;9:110. Doi: 10.3389/fcimb.2019.00110

Huang Y, Zhao X, Cui L, Huang S. Metagenomic and Metatranscriptomic Insight Into Oral Biofilms in Periodontitis and Related Systemic Diseases. Front Microbiol. 2021;12: 728585. Disponible en: 10.3389/fmicb.2021.728585

Jo JH, Kennedy EA, Kong HH. Research Techniques Made Simple: Bacterial 16S Ribosomal RNA Gene Sequencing in Cutaneous Research. J Invest Dermatol. 2016;136(3):e23-7. Doi: 10.1016/j.jid.2016.01.005

Benítez-Páez A, Belda-Ferre P, Simón-Soro A, Mira A. Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genomics. 2014; 15:311. Doi: 10.1186/1471-2164-15-311

Ojeda-Garcés JC, Oviedo-García E, Salas LA. Streptococcus mutans y caries dental. CES Odontol. enero de 2013;26(1):44-56. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-971X2013000100005

Belda-Ferre P, Williamson J, Simón-Soro Á, Artacho A, Jensen ON, Mira A. The human oral metaproteome reveals potential biomarkers for caries disease. Proteomics. 2015;15(20):3497-507. Doi: 10.1002/pmic.201400600

Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008;46(4):1407-17. Doi: 10.1128/JCM.01410-07

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852-7. Doi: 10.1038/s41587-019-0209-9

Jagtap PD, Blakely A, Murray K, Stewart S, Kooren J, Johnson JE, et al. Metaproteomic analysis using the Galaxy framework. Proteomics. octubre de 2015;15(20):3553-65.

Takahashi N, Washio J, Mayanagi G. Metabolomic approach to oral biofilm characterization—A future direction of biofilm research. J Oral Biosci. 2012;54(3):138-43. Doi: 10.1002/pmic.201500074

Belstrøm D, Jersie-Christensen RR, Lyon D, Damgaard C, Jensen LJ, Holmstrup P, et al. Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls. PeerJ. 2016;4:e2433. Doi: 10.7717/peerj.2433. eCollection 2016

Moussa DG, Ahmad P, Mansour TA, Siqueira WL. Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era. Front Cell Infect Microbiol. 2022;12:887907. Doi: 10.3389/fcimb.2022.887907

Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol Med. 2015;21(3):172-83. Doi: 10.1016/j.molmed.2014.11.004

Nibali L, Di Iorio A, Tu YK, Vieira AR. Host genetics role in the pathogenesis of periodontal disease and caries. J Clin Periodontol. marzo de 2017;44 Suppl 18:S52-78. Doi: 10.1111/jcpe.12639

Tong X, Hou S, Ma M, Zhang L, Zou R, Hou T, et al. The integration of transcriptome-wide association study and mRNA expression profiling data to identify candidate genes and gene sets associated with dental caries. Arch Oral Biol. 2020;118:104863. Doi: 10.1016/j.archoralbio.2020.104863

Laputková G, Schwartzová V, Bánovčin J, Alexovič M, Sabo J. Salivary Protein Roles in Oral Health and as Predictors of Caries Risk. Open Life Sci. enero de 2018;13:174-200. Doi: 10.1515/biol-2018-0023

Duran-Pinedo AE, Frias-Lopez J. Beyond microbial community composition: functional activities of the oral microbiome in health and disease. Microbes Infect. 2015;17(7):505-16. Doi: 10.1016/j.micinf.2015.03.014

Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16(12):745-59.

Ingendoh-Tsakmakidis A, Mikolai C, Winkel A, Szafrański SP, Falk CS, Rossi A, et al. Commensal and pathogenic biofilms differently modulate peri-implant oral mucosa in an organotypic model. Cell Microbiol. octubre de 2019;21(10):e13078. Doi: 10.1038/s41579-018-0089-x

Kraikivski P, Chen KC, Laomettachit T, Murali TM, Tyson JJ. From START to FINISH: computational analysis of cell cycle control in budding yeast. NPJ Syst Biol Appl. 2015; 1:15016. Doi: 10.1038/npjsba.2015.16

Lv Z, Fu K, Zhang Q. Advances of exosomes-based applications in diagnostic biomarkers for dental disease and dental regeneration. Colloids Surf B Biointerfaces. 2023; 229:113429. Doi: 10.1016/j.colsurfb.2023.113429.

Sonis ST. Genomics, Personalized Medicine and Oral Disease. Springer Cham [citado 5 de enero de 2024]. p. 408. Doi: 10.1007/978-3-319-17942-1

Publicado

2025-01-15

Como Citar

Araujo Blanco, J. A., Castillo Pedraza, M. C., & Wilches Visbal, J. H. (2025). Cárie dentária: da genética à ômica. Salud, Arte Y Cuidado, 18(1), 33-42. https://doi.org/10.5281/zenodo.14739181

Edição

Seção

Artículos científicos originales

##plugins.generic.recommendByAuthor.heading##