Oxidative damage and antioxidant behaviour of ascorbate and glutathione in two onion genotypes differing in salt sensitivity
Keywords:
Allium cepa, ascorbate, glutathione, lipid peroxidation, onion, salinity stressAbstract
Salinity is a limiting factor on the productivity of the onion, because this species is sensitive to salts. In this study, the effect of salinity on oxidative damage and the antioxidant behavior of ascorbate and glutathione, was evaluated in two genotypes of onion with different response to salts, in order to determinate if the antioxidant protection is related to their differential sensitivity to salts. Plants 40 days old of the genotypes ‘Granex 429’ and ‘Texas 502’, with low and high sensitivity to salt stress respectively, were stressed by a mixture of salts (CE 6 dS·m-1) for 20 days, maintaining a control group; after the end of the period, it was determined: degree of lipid peroxidation (DLP) and content of ascorbate and glutathione in roots and leaf. The salinity affected the DPL in leaves being that effect higher in ‘Texas 502’ than in ‘Granex 429’ while in roots this variable was not altered. The content of ascorbate in roots and leaves decreased with salinity in ‘Texas 502’ while in ‘Granex 429’ it not changed in roots, but in the leaf there was a significant increase in its concentration and redox state. With salinization the root content of glutathione was increased and the opposite occurred in the leaf of both genotypes. The results suggested that the lower sensitivity to salts in ‘Granex 429’ is associated with a better capacity of antioxidant protection of the foliar tissue, accomplished by an increase in the antioxidant activity of ascorbate.
Downloads
References
2. Ahmad P., R. John, M. Sarwat y S. Umar. 2008. Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int. J. Plant Prod.2(4): 353-366.
3. Almeida R. y R. Serralheiro. 2017. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3(2):30. 13 p.
4. Alves Da Costa P., A. Azevedo Neto, M. Alves Bezerra, J. Prisco y E. Gomes-Filho. 2005. Antioxidant-enzymatic system of two sorghum genotypes differing in salt tolerant. Braz. J. Plant Physiol. 17(4): 353-361.
5. Apel K. y H. Hirt. 2004. Reactive Oxygen Species: Metabolism, oxidative stress, and signaling transduction. Ann. Rev. Plant Biol. 55: 373-399.
6. Athar H., A. Khan y M. Ashraf. 2008. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ. Exp. Bot. 63: 224-231.
7. Azevedo-Neto A., J. Prisco, J. Eneas-Filho, C. Braga y E. Gomes-Filho. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56(1): 87-94.
8. Azooz M., A Ismail y M. Elhamd. 2009. Growth, lipid peroxidation and antioxidant enzyme activities as a selection criterion for the salt tolerance of maize cultivars grown under salinity stress. Int. J. Agric. Biol. 11(1): 21-26.
9. Çakmak I. y J. Horst. 1991. Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol.Plant. 83: 463-468.
10. Choudhury F., R. Rivero, E. Blumwald y R. Mittler. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90(5): 856-867.
11. Das K. y A. Roychoudhury. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2:53. 13 p.
12. Di Baccio D, F. Navari-Izzo y R. Izzo. 2004.Seawater irrigation: antioxidant defense responses in leaves and roots of a sunflower (Helianthus annuus L.) ecotype. J. Plant Physiol. 161: 1359-1366.
13. El-Baky A., H. Hanna, M. Amal y M. Hussein. 2003. Influence of salinity on lipid peroxidation and isoenzymes in leaves of some onion cultivars. Asian J. Plant Sci. 2(17): 1220-1227.
14. Farooq M., M. Hussain, A. Wakeel, H. Kadambot y M. Siddique. 2015. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35: 461-481.
15. García G., M. García y H. Ramírez. 2012. Acumulación radical y foliar de iones en dos genotipos de cebolla con distinta sensibilidad ante el estrés salino. Journal of the Interamerican Society for Tropical Horticulture 56: 63-68.
16. García G., M. García y H. Ramírez. 2015. Comportamiento de siete cultivares de Allium cepa L. ante diferentes niveles de estrés salino. Bioagro 27 (2): 93:102.
17. Griffith O. 1985. Glutathione and glutathione disulfide. In: H. Bergmeyer (ed.). Methods of Enzymatic Analysis. Edit. Verlagsgesellschaft, Weinheim, Germany. Volume 8. pp. 521-529.
18. Halliwell B. 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 141(2): 312-322.
19. Hamed K., A. Castagna, E. Salem, A. Ranieri y Ch. Abdelly. 2007. Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regul. 53(3): 185-194.
20. Hasanuzzamani M., K. Nahar, T. Anne y M. fujita. 2017. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants 23(2): 249-268.
21. Hernández J., A. Jiménez, P. Mullineaux y F. Sevilla. 2000. Tolerance of pea (Pisum sativum L.) to long term stress is associated with induction of antioxidant defences. Plant Cell Environ. 23: 853-862.
22. Hernández M., N. Fernández-Garcia, P. Diaz-Vivancos y E. Olmos. 2010. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J. Exp. Bot. 61(2): 521-535.
23. Khan M. y S. Panda. 2008. Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol. Plant. 30(1): 81-89.
24. Kibria M., M. Hossain, Y. Murata y A. Hoque. 2017. Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Science 24(3): 155-162.
25. Kumar M., R. Kumar, V. Jain y S. Jain. 2018. Differential behavior of the antioxidant system in response to salinity induced oxidative stress in salt-tolerant and salt-sensitive cultivars of Brassica juncea L. Biocatal. Agric. Biotechnol. 13: 12-19.
26. Law M., S. Charles y B. Halliwell. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochem. J. 210: 899-903.
27. Maas E. 1990. Crop salt tolerance. In: K. Tanji (ed.). Agricultural Salinity Assessment and Management. American Society of Civil Engineers. New York. pp. 262-304.
28. Negrâo S., S. Schmöckel y M. Tester. 2017. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 119(1): 1-11.
29. Sadak M., E. Abd Elhamid y M. Ahmed. 2017. Glutathione induced antioxidant protection against salinity stress in chickpea (Cicer arietinum L.) plant. Egypt. J. Bot. 57(2): 293-302.
30. Sairam R. y A. Tyagi. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86(3): 407-421.
31. Shalata A., V. Mittova, M. Volokita, M. Guy y M. Tal. 2001. Response of the cultivated tomato and this wild salt-tolerance relative Lycopersicon pennelii to salt-dependent oxidative stress: The root antioxidative system. Physiol. Plant. 112(4): 487-494.
32. Shrivastava P. y R. Kumar. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22(2): 123-131.
33. Siddiqui M., S. Alamri, M. Al-Khaishany, M. Al-Qutami y H. Ali. 2018. Abscorbic acid application improves salinity stress tolerance in wheat. Chiang Mai J. Sci. 45: 1-11.
34. Taïbi, K., F. Taïbi, L. Abderrahima, A. Ennajahb, M. Belkhodja y J. Mulet. 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S. Afri. J. Bot. 105: 306-3012.
35. Tausz M., H. Šircelj y D. Grill. 2004. The glutathione system as a stress marker in plant ecophysiology: Is a stress-response concept valid? J. Exp. Bot. 55(404): 1955-1962.
36. Torres D., J. Alvarez, J. Contreras, M. Henríquez, W. Hernández, J. Lorbes y J. Mogollón. 2017. Identificación de potencialidades y limitaciones de suelos agrícolas del estado Lara, Venezuela. Bioagro 29(3): 207-218.
37. Tsai Y., C. Hong, L. Liu y C. Kao. 2004. Relative importance of Na+ and Cl– in NaCl induced antioxidant systems in roots of rice seedlings. Physiol. Plant. 122(1): 86-94.
38. Vaidyanathan H., P. Sivakumar, R. Chakrabarty y G. Thomas. 2003. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) differential response in salt-tolerant and sensitive varieties. Plant Sci. 165: 1411-1418.
39. Venkatesh J. y W. Park. 2014. Role of L-ascorbate in alleviating abiotic stresses in crop plants. Botanical Studies 55:38. 19 p.
40. Villafañe R., O. Abarca, M. Azpúrua, T. Ruíz y J. Dugarte. 1999. Distribución espacial de los suelos de Quíbor y su relación con las limitaciones del drenaje y la calidad de agua. Bioagro 11(2): 43-50.
Published
How to Cite
Issue
Section
Rights of the author/s are from the year of publication
This work is under the license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors not necesarily reflect the position of the publisher or UCLA. The total or partial reproduction of the texts published in this journal is authorized, as long as the complete source and the electronic address of this journal is cited. Authors have the right to use their articles for any purpose as long as it is done for non-profit purposes. Authors can publish the final version of their work on internet or any other medium, after it has been published in this journal.
Bioagro reserves the right to make textual modifications and technical adjustments to the figures of the manuscripts, in accordance with the style and specifications of the journal.