Peach rootstocks under water deficit and their characterization based on anatomical and physiological variables

Authors

  • Juan Aguilar-Moreno Dpto. de Fitotecnia, Posgrado en Horticultura, Universidad Autónoma Chapingo. Chapingo, México. C.P. 56230
  • Alejandro F. Barrientos-Priego Dpto. de Fitotecnia, Posgrado en Horticultura, Universidad Autónoma Chapingo. Chapingo, México. C.P. 56230.
  • Juan E. Rodríguez-Pérez Dpto. de Fitotecnia, Posgrado en Horticultura, Universidad Autónoma Chapingo. Chapingo, México. C.P. 56230.
  • Gustavo Almaguer-Vargas Dpto. de Fitotecnia, Posgrado en Horticultura, Universidad Autónoma Chapingo. Chapingo, México. C.P. 56230.

Keywords:

Assimilation rate, Prunus persica, multivariate analysis, xylem

Abstract

The lack of water is a global problem for the culture of crops. Knowing relations among intrinsic factors of how rootstocks can withstand water deficiency is important for their selection towards drought tolerance. Physiological and morphological aspects were characterized in seven genotypes of peach used as rootstocks at the following states of Mexico: Puebla (Zautla), Tlaxcala (Blanco and Amarillo), Veracruz (Jalacingo), Oaxaca (Oaxaca), State of México (Enano), Zacatecas (Zacatecas), along with the rootstock Nemaguard. One year and a half old plants were evaluated by eighteen characteristics under irrigation and drought, and analyzed by multivariable methods. The Nemaguard and Jalacingo rootstocks showed no significant differences with each other under drought conditions, while the other rootstocks were grouped according to place of origin and the irrigation condition. The principal component analysis explained 83.813 % of the total variance with three main components. The first component grouped anatomic variables (area, perimeter, major axis length, minor axis length and Feret diameter of the xylem vessels, as well as the relative conductivity of the shoot); the second component grouped physiological variables (CO2 assimilation rate, transpiration rate and stomatal conductance). By canonical discriminant analysis the evaluated rootstocks grouped Puebla (Zautla) with State of Mexico (Enano), and Zacatecas with Oaxaca, the latter two corresponding to temperate zones with low water availability. Within physiological and anatomical variables, it was possible to group the rootstocks according to their behavior under irrigation and drought.

Downloads

Download data is not yet available.

References

1. Bänziger, M., G. Edmeades, D. Beck y M. Bellon. 2012. Mejoramiento para aumentar la tolerancia a sequía y a deficiencia de nitrógeno en el maíz: De la teoría a la práctica. CIMMYT. D.F., México. 68 p.
2. Basile, B., J. Marsal y T. Dejong. 2003. Daily shoot extension growth of peach trees growing on rootstocks that reduce scion growth is related to daily dynamics of stem water potential. Tree Physiology 23: 695-704.
3. Carlquist, S. 1977. Ecological factors in wood evolution: a floristic approach. American Journal of Botany 64: 887-896.
4. Carlsbecker, A. y Y. Helariutta. 2005. Phloem and xylem specifications: Pieces of the puzzle emerge. Current Opinion in Plant Biology 8: 512-517.
5. Centritto, M., F. Magnani, H. Lee y P. Jarvis. 1999. Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings. II. Photosynthetic capacity and water relations. New Phytologist 141(1): 141-153.
6. Durán R., R. y J. Sahagún Castellanos. 1992. La interacción genético-ambiental en la genotecnia vegetal. Revista Chapingo 16: 79-80.
7. Fahn, A., E. Werker y P. Baas. 1986. Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. Israel Academy of Sciences and Humanities. Jerusalem, Israel. 221 p.
8. Johnson, D.E. 1998. Métodos Multivariados Aplicados al Análisis de Datos. International Thomson. D.F., México. 566 p.
9. Loepfe, L., J. Martínez V., J. Piñol y M. Mencuccini. 2007. The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology 247: 788-803.
10. Meinzer, F., D. Johnson, B. Lachenbruch, K. McCulloh y D. Woodruff. 2009. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology 23: 922-930.
11. Núñez-Colín., C. y A. Barrientos-Priego, 2004. Variabilidad interna, un uso alternativo del análisis en componentes principales. Proceedings of the Interamerican Society for Tropical Horticulture 48: 203-207.
12. Núñez-Colín., C., A. Barrientos-Priego, J. Rodríguez-Pérez y R. Nieto-Ángel. 2006. Variabilidad anatómica de los sistemas de conducción y estomático de genotipos de Prunus spp. de diferentes orígenes. Pesquisa Agropecuaria Brasileira 41(2): 233-241.
13. Ortuño, M., Y García, W. Conejero, M. Ruiz, J. Alarcon y A. Torrecillas. 2006. Stem and leaf water potentials, gas exchange, sap flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees 20: 1-8.
14. Pire, R., M. Sanabria, A. Pereira y J. Díez. 2007. Conductividad hidráulica y grosor de los vasos del xilema en cinco materiales de vid sometidos a déficit hídrico. Interciencia 32(1): 35-40.
15. Rieger, M. 1992. Growth, gas exchange, water uptake, and drought response of seedling and cutting propagated peach and citrus rootstocks. Journal of American Society of Horticultural Science 117(5): 834-840.
16. Solari, L., S. Johnson y T. Dejong. 2006. Relationship of water status to vegetative growth and leaf gas exchange of peach (Prunus persica) trees on different rootstocks. Tree Physiology 26: 1333-1341.
17. Taiz, L. y E. Zeiger. 2010. Plant Physiology. Sinauer Associates. Sunderland, MA, USA.
18. Tombesi, S., A. Almehdi y T. Dejong. 2011. Phenotyping vigour control capacity of new peach rootstocks by xylem vessel analysis. Scientia Horticulturae 127: 353-357.
19. Valladares, F. (ed). 2004. Ecología del Bosque Mediterráneo en un Mundo Cambiante. Organismo Autónomo de Parques Naturales, Ministerio de Medio Ambiente. Madrid, España.
20. Vilagrosa, A., F. Morales, F. Abadía, J. Bellot, H. Cochard y E. Gil P. 2010. Are symplast tolerance to intense drought conditions and xylem vulnerability to cavitation coordinated? An integrated analysis of photosynthetic, hydraulic and leaf level processes in two Mediterranean drought-resistant species. Environmental and Experimental Botany 69: 233-242.
Weibel, A. 2003. Comparative vegetative growth responses of two peach cultivars grown on size-controlling versus standard rootstocks. Journal of the American Society for Horticultural Science 128(4): 463-471.

Published

2020-04-01

How to Cite

Aguilar-Moreno, J., Barrientos-Priego, A. F., Rodríguez-Pérez, J. E., & Almaguer-Vargas, G. (2020). Peach rootstocks under water deficit and their characterization based on anatomical and physiological variables. Bioagro, 31(2), 91-102. Retrieved from https://revistas.uclave.org/index.php/bioagro/article/view/2628

Issue

Section

Artículos