Effect of the application of biostimulants and Trichoderma on growth in maracuyá plants (Passiflora edulis Sims) in nursery

Authors

  • Gabriel Díaz Facultad de Agronomía, Universidad Central de Venezuela. Apdo. 2101. Maracay, Venezuela.
  • Gustavo Rodríguez Corporación Colombiana de Investigación Agropecuaria (Agrosavia). Apdo. 344300. Mosquera, Cundinamarca, Colombia.
  • Lennys Montana Facultad de Agronomía, Universidad Central de Venezuela. Apdo. 2101. Maracay, Venezuela.
  • Tatiana Miranda Corporación Colombiana de Investigación Agropecuaria (Agrosavia). Apdo. 344300. Mosquera, Cundinamarca, Colombia.
  • Carmen Basso Facultad de Agronomía, Universidad Central de Venezuela. Apdo. 2101. Maracay, Venezuela.
  • Miguel Arcia Facultad de Agronomía, Universidad Central de Venezuela. Apdo. 2101. Maracay, Venezuela.

Keywords:

Bacillus, biocontroller agent, chitosan, growth promoter

Abstract

The use of biostimulants and biocontrollers in nurseries can favor the obtaining of high quality seedlings. The effect of the application of biostimulants with and without inoculation of Trichoderma harzianum on growth and development of passion fruit seedlings was evaluated. The trial was carried out in a farm located in Santiago Mariño municipality, Aragua State, Venezuela, using a completely randomized design with a 5x2 factorial arrangement and three repetitions. The factors were biostimulants (Terrahumus; Stimulant Plus Manvert; Biorend and Biovida activator, plus a control without product application) and Trichoderma harzianum (presence or absence) for a total of 10 treatments. The evaluated variables were leaf number (LN), plant height (PH), chlorophyll index (CI), root length (RL), shoot dry weight (SDW) and root dry weight (RDW). There was no interaction between the factors. The application of biostimulants exerted a positive effect on the biometric variables such as LN and RDW, with respect to the control. There were significant differences between the application of T. harzianum and the control, with increases of 23.75; 23.84; 12, 27; 88 and 64.3 % for LN, PH, RL, SDW and RDW, respectively. It is concluded that the use of stimulating substances and T. harzianum improves parameters related to growth and development in passion fruit seedlings.

Downloads

Download data is not yet available.

References

1. Ahmad, Z., Wu, J., Chen, L. y Dong, W. (2017). Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Scientific Reports 7(1): 1777.

2. Alkooranee, J., T. Aledan, A. Ali, G. Lu, X. Zhang, J. Wu, C. Fu y M. Li1. 2017. Detecting the hormonal pathways in oilseed rape behind induced systemic resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum. Plos One 12(1): 1-21. e0168850.

3. Asari, S., Tarkowská, D., Rolčík, J., Novák, O., Palmero, D. V., Bejai, S., y Meijer, J. (2017). Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta 245(1): 15-30.

4. Aslantas, R., R. Cakmakcı y F. Sahin. 2007. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci. Hort. 111: 371-377.

5. Azarmi, R., B. Hajieghari y A. Giglou. 2011. Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology 10(31): 5850-5855.

6. Barroso, F., P. Pereira, D. Milan, W. Silva, N. Faria, F. Rodrigues y D. Costa. 2019. Growth promotion of Parsley (Petroselinum crispum L.) using commercial strains of Trichoderma spp. Journal of Agricultural Science 11(4): 493-499.

7. Basso, C., G. Rodríguez, G. Rivero, R. León, M. Barrios y G. Díaz. 2019. Respuesta del cultivo de maracuyá (Passiflora edulis Sims) a condiciones de estrés por inundación. Bioagro 31(3): 185-192.

8. Calvo, P., L. Nelson y J. Kloepper. 2014. Agricultural uses of plant biostimulants. Plant Soil 383: 3-41.

9. Constantino, M., R. Gomez, J. Álvarez, J. Pat y E. Espín. 2011. Efecto de la inoculación de Azotobacter chroococcum y Glomus intraradices en el crecimiento y nutrición de plántulas de papaya en fase de vivero. Agronomía Costarricense 35(1): 15-31.

10. Cubillos, J., N. Valero y L. Mejía. 2011. Trichoderma harzianum como promotor del crecimiento vegetal del maracuyá (Passiflora edulis var. flavicarpa Degener). Agron. Colomb. 27(1): 81-86.

11. Da Silva, G., I. Lucena, F. Albano y J. Antiveli. 2013. Estado nutricional e clorofila foliar do maracujazeiro amarello en funçao de biofertilizantes, calagen e adubaçao con N e K. Rev. de Ciencias Agrarias 36(2): 163-173.

12. Díaz, G. y G. Rodríguez. 2016. Efecto de la aplicación de tres bioestimulantes sobre el desarrollo y productividad en plantas de guayaba (Psidium guajava L.) ‘Cubana Roja’. Rev. Fac. Agron. (UCV) 42 (1): 1-13.

13. Donoso, E., G. Lobos y N. Rojas. 2008. Efecto de Trichoderma harzianum y compost sobre el crecimiento de plántulas de Pinus radiata en vivero. Bosque 29(1): 52-57.

14. du Jardin, P. 2015. Plant Biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae 196: 3-14.

15. Erturk, Y., S. Ercisli, A. Haznedar y R. Cakmakci. 2010. Effects of plant growth promoting rhizobacteria (PGPR)on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biol Res 43: 91-98.

16. García, R., M. Arcia, M. Pérez y R. Riera. 2012. Efecto de Trichoderma sobre el desarrollo de papa y el biocontrol de Rhizoctonia bajo tres tiempos de inicio de aplicación. Agronomía Trop. 62(1-4): 77-95.

17. Glick, B. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 169: 30-39.

18. Harman, G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96: 190-194.

19. Hooks, C. R. R., Wright, M. G., Kabasawa, D. S., Manandhar, R. y Almeida, R. P. P. 2008. Effect of banana bunchy top virus infection on morphology and growth characteristics of banana. Annals of Applied Biology 153(1): 1-9.

20. Kandel, S., A Firrincieli, P. Joubert, P. Okubara, N. Leston, K. McGeorge y S. Doty. 2017. An in vitro study of bio-control and plant growth promotion potential of Salicaceae endophytes. Front Microbiol. 8: 386.

21. Karlidag, H., A. Esitken, M. Turan y F. Sahin. 2007. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci. Hort. 114: 16-20.

22. Kavoo- Mwangia, A., E. Kahangia, E. Atekaa, J. Ongusoa, R. Mukhongob, E. Mwangib, y J. Jefwa. 2013. Growth effects of microorganisms based commercial products inoculated to tissue cultured banana cultivated in three different soils in Kenya. Applied Soil Ecology 64: 152–162.

23. Larez, C. 2008. Algunas potencialidades de la quitina y el quitosano para usos relacionados con la agricultura en Latinoamérica. Revista UDO Agrícola 8 (1): 1-22.

24. Liu, K., J. McInroy, C. Hu y J. Kloepper. 2018. Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Disease 102: 67-72.

25. Majeed, A., M. Abbasi, S. Hameed, A. Imran, N. Rahim. 2015. Isolation and characterization of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6:198.

26. Majeed, A., Z. Muhammad y H. Ahmad. 2018. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Springer, German. Plant Cell Reports. 37(3): 1599-1609.

27. Marrero, M., I. Reynaldo, G. Cabrera y M. Martinez. 1997. Hidrolizado de quitosano como estimulador del crecimiento de vitroplantas de naranjo agrio (Citrus aurantium). Cultivos Tropicales 18(1): 38-39.

28. Mateus-Cagua, D.M. y G. Rodríguez-Yzquierdo. 2019. Effect of biostimulants on the dry matter accumulation and gas exchange in plantains plants (Musa AAB). Revista Colombiana de Ciencias Hortícolas 13(2): 151-160.

29. Mohamed, H.I. y E.Z. Gomaa. 2012. Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 50(2): 263-272.

30. Morales-Payan, J. y W. Stall. 2004. Passion fruit (Passiflora edulis) transplant productionis affected by selected biostimulants. Proc. Fla. State Hort. Soc. 117: 224-227.

31. Otieno, N., R. Lally, S. Kiwanuka, A. Lloyd, D. Ryan, J. Germaine y D. Dowling 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Micro-Biol 6: 745.

32. Pérez-Torres, E., A. Bernal-Cabrera, P. Milanés-Virelles, Y. Sierra-Reyes, M. Leiva-Mora, S. Marín-Guerra y O. Monteagudo-Hernández. 2018. Eficiencia de Trichoderma harzianum y sus filtrados en el control de tres enfermedades fúngicas foliares en arroz. Bioagro 30(1): 17-26.

33. Raheem, A., A. Shaposhnikov, A. Belimov, I. Dodd y B. Ali. 2018. Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Arch Agron Soil Sci. 64: 574-587.

34. Rodríguez, G. 2016. Evaluación del manejo del cultivo parchita maracuyá (Passiflora edulis Sims) en ciclo anual, con riego deficitario controlado y control biológico de Fusarium spp. a base de Trichoderma spp. Tesis. Universidad Central de Venezuela. Maracay. 200 p.

35. Rodríguez, G., F. Leal y B. Naranjo. 2012. Situación actual de los cultivos Frutales de mayor importancia en Venezuela. Revista Facultad de Agronomía UCV. Edición Especial Alcance 1: 212-221.

36. Rodríguez, G., H. Pradenas, C. Basso, M. Barrios, R. León y M. Pérez. 2020. Efecto de dosis de nitrógeno sobre la agronomía y fisiología de plantas de maracuyá. Agronomía Mesoamericana 31(1): 117-128.

37. Sánchez, A., J. Sánchez, M. Juárez, J. Jordá y D. Bermúdez. 2006. Improvement of iron uptake in tablegrape by addition of humic substances. J. Plant. Nutr. 29: 259-272.

38. Santos, H., S. Mello y J. Peixoto. 2010. Associação de isolados de Trichoderma spp. e ácido indol-3-butírico (AIB) na promoção de enraizamento de estacas e crescimento de maracujazeiro. Biosci. J. 26(6): 966-972.

39. Saravanakumar, D., C. Vijayakumar, N. Kumar y R. Samiyappan. 2007. PGPR-induced defense responses in the tea plant against blister blight disease. Crop Protection 26: 556-565.

40. Shameer, S. y T. Prasad. 2018. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regulation 84(2): 1-13.

41. Singh, A., N. Shukla, N. Kabadwal, A. Tewari y J. Kumar. 2018. Review on Plant-Trichoderma-Pathogen Interaction. Int. J. Curr. Microbiol. App. Sci. 7(2): 2382-2397.

42. Torres, G y M. Añez. 2008. Efecto de aplicaciones foliares sobre el crecimiento de plántulas de parchita (Passiflora edulis f. flavicarpa Degener) en vivero. Rev. Unellez Cienc. Tec. 26: 54-61.

43. Tortolero, J. y D. Pavone. 2012. Efecto de Trichoderma spp. sobre Rhizoctonia solani y algunos parámetros fisiológicos en Zea mays L. bajo condiciones de vivero. Fitopatología Venezolana 25: 10-15.

44. Veneros, R., M. Chaman., E Araujo y F. Ramirez. 2014. Efecto de acidos húmico y fúlvico en el crecimiento de Passiflora ligularis cultivada en condiciones de invernadero. Rebiol 34(1): 13-18.

45. Veobides, H., F. Gurudi y V. Váquez. 2018. Las sustancias húmicas como bioestimulantes de plantas bajo condiciones de estrés ambiental. Cultivos Tropicales 39(4):102-109

46. Zheng, B., X. Hao, K. Ding, G. Zhou, Q. Chen, J. Zhang y Y. Zhu. 2017. Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil. Sci Rep 7: 42284.

Published

2020-10-03

How to Cite

Díaz, G., Rodríguez, G., Montana, L., Miranda, T., Basso, C., & Arcia, M. (2020). Effect of the application of biostimulants and Trichoderma on growth in maracuyá plants (Passiflora edulis Sims) in nursery. Bioagro, 32(3), 195-204. Retrieved from https://revistas.uclave.org/index.php/bioagro/article/view/2787