Native plant species with potential for the phytoremediation of high-andean soils contaminated by residues from mining activity

Authors

  • Luis Martínez-Manchego Universidad Nacional de San Agustín de Arequipa. Unidad de Posgrado de la Facultad de Ciencias Naturales y Formales. Arequipa, Perú. https://orcid.org/0000-0002-2928-3708
  • Guido Sarmiento-Sarmiento Universidad Nacional de San Agustín de Arequipa. Unidad de Posgrado de la Facultad de Ciencias Naturales y Formales. Arequipa, Perú. https://orcid.org/0000-0002-1420-2186
  • Edwin Bocardo-Delgado Universidad Nacional de San Agustín de Arequipa. Unidad de Posgrado de la Facultad de Ciencias Naturales y Formales. Arequipa, Perú. https://orcid.org/0000-0003-2926-5013

DOI:

https://doi.org/10.51372/bioagro333.2

Keywords:

Mining tailings, phytotechnologies, soil remediation, tolerant plants

Abstract

The implementation of phytotechnologies to minimize the negative environmental impact of mining tailings requires the characterization of native plant species adapted and tolerant to soils contaminated with toxic metals. The objective was to identify and characterize native plant species with potential for phytoremediation of high Andean soils contaminated by mining tailings. The research was carried out in the tailings deposit area of the mining company "El Madrigal" in the district of Madrigal, Caylloma province, Arequipa, Peru; located at 15º35' S, 71º50' W and 3400 m altitude. Five sampling zones were established (first zone, and zones A, B, C and D). The concentration of contaminants in the soil samples with tailings was detected by inductively coupled plasma atomic emission spectrometry; the collection and identification of plant species was achieved by stratified systematic sampling, and the botanical samples were sent to the Michael Owen Dillon Scientific Institute for taxonomic identification according to the proposal of the Angiosperm Phylogeny Group. Similarity, diversity and equitability indices were used to characterize plant species. The most abundant plant species, and as such, with greater potential for phytoremediation were Cortaderia jubata, Baccharis sp, Stipa ichu and Juncus sp.; also, the species Eragrostis nigricans was included in this group because it was identified only in the first zone, the one with notable discharge of mining tailings. Consequently, these native species showed greater potential aptitude for phytoremediation of soils contaminated with As, Ba, Hg, Cd and Pb due to their adaptation and tolerance to adverse effects of contamination in high Andean soils.

Downloads

References

Alcántar, G. y L. Trejo-Téllez. 2010. Nutrición de Cultivos. Mundi-Prensa. México.

Ali, H., E. Khan y M. Sajad. 2013. Phytoremediation of heavy metals- Concepts and applications. Chemosphere 91(7): 869-881.

Al-Thani, R. F. y B.T. Yasseen. 2019. Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives. Environmental Pollution 259: 113694.

Aral, H. y A. Vecchio-Sadus. 2008. Toxicity of lithium to humans and the environment: A literature review. Ecotoxicology and Environmental Safety 70(1): 349-356.

Bech, J., N. Roca, P. Tume, J. Ramos-Miras, C. Gil y R. Boluda. 2016. Screening for new accumulator plants in potential hazards elements polluted soil surrounding Peruvian mine tailings. Catena 136: 66-73.

Carrillo-González, R. y M. González-Chávez. 2006. Metal accumulation in wild plants surrounding mining wastes. Environmental Pollution 144(1): 84-92.

Chang, J., M. Gonzales, O. Ponce, L. Ramírez, V. León, A. Torres, M. Corpus y R. Loayza-Muro. 2018. Acumulación de metales pesados en plantas nativas andinas: herramientas potenciales para la fitorremediación de suelos en Ancash (Perú). Environmental Science and Pollution Research 25(34): 33957-33966.

Chase, M.W., M.J. Christenhusz, M.F. Fay, J.W. Byng, W.S. Judd, D.E. Soltis et al. 2016. The Angiosperm Phylogeny Group: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants - APG IV. Botanical Journal of the Linnean Society 181(1): 1-20.

Cruzado-Tafur, E., L. Torró, K. Bierla, J. Szpunar y E. Tauler. 2021. Contenido de metales pesados en suelos e inventario de flora nativa en pasivos ambientales mineros en los Andes peruanos. Revista de Ciencias de la Tierra de América del Sur 106: 103-107.

Fernández, S., C. Poschenrieder, C. Marceno, J. Gallego, D. Jiménez-Gámez, A. Bueno y E. Afif. 2017. Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain. Journal of Geochemical Exploration 174: 10-20.

Gajić, G., L. Djurdjević, O. Kostić, S. Jarić, M. Mitrović y P. Pavlović. 2018. Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine waste. Frontiers in Environmental Science 6: 124.

Galán, E. y A. Romero. 2008. Contaminación de suelos por metales pesados. Macla: Revista de la Sociedad Española de Mineralogía 10(1): 48-60.

Guerrero, M. y V. Pineda. 2016. Contaminación del suelo en la zona minera de Rasgatá Bajo (Tausa), modelo conceptual. Ciencia e Ingeniería Neogranadina 26(1): 57-74.

Gutiérrez, H. y R. Castañeda. 2014. Diversidad de las gramíneas (Poaceae) de Lircay (Angaraes, Huancavelica, Perú). Ecología Aplicada 13(1): 23-33.

Halloy, S., M. Ibáñez y K. Yager. 2011. Puntos y áreas flexibles (PAF) para inventarios rápidos del estado de biodiversidad. Ecología en Bolivia 46(1): 46-56.

Hautier, Y., D. Tilman, F. Isbell, E. Seabloom, E. Borer y P. Reich. 2015. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348(6232): 336-340.

Hou, M., M. Li, X. Yang y R. Pan. 2019. Responses of nonprotein thiols to stress of vanadium and mercury in maize (Zea mays L.). Bulletin of Environmental Contamination and Toxicology 102: 425–431.

Iqbal, M., Z. He, P. Stoffella y X. Yang. 2008. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. Journal of Zhejiang University Science 9(1): 210-220.

Mengel, E. y E. Kirkby. 2000. Principios de Nutrición Vegetal. Instituto Internacional del Potasio. Suiza.

MINAM (Ministerio del ambiente- Perú). 2014. Guía para el muestreo de suelos. https://n9.cl/4yfyz (consulta de Dic. 4, 2020).

MINAM (Ministerio del ambiente- Perú). 2017. Estándares de calidad ambiental para suelos – ECA. Decreto Supremo N° 011-2017-MINAM. https://n9.cl/u6omg (consulta de Oct. 4, 2020).

Mostacedo, B. y T. Fredericksen. 2000. Manual de métodos básicos de muestreo y análisis en ecología vegetal. El País. La Paz. 87 p.

Naoki, K., R. Meneses, M. Gómez y C. Landivar. 2014. El uso del método de puntos de intercepción para cuantificar los tipos de vegetación y hábitats abióticos

en los bofedales altoandinos. Ecología en Bolivia 49(3): 84-90.

Pernía, B., M. Calabokis, K. Noris, J. Bubis, M. Guerra y M. Castrillo. 2019. Effects of cadmium in plants of Sphagneticola trilobata (L.) Pruski. Bioagro 31(2): 133-142.

Pla, L. 2006. Biodiversidad: Inferencia basada en el índice de Shannon y la riqueza. Interciencia 31(8): 583-590.

Poma, V. y Valderrama, A. 2014. Estudio de los parámetros fisicoquímicos para la fitorremediación de cadmio (ii) y mercurio (ii) con la especie Eichhornia crassipes (jacinto de agua). Revista de la Sociedad Química del Perú 80(3): 164 -173.

Puga, S., M. Sosa, T. Lebgue, C. Quintana y A. Campos. 2006. Contaminación por metales pesados en suelo provocada por la industria minera. Ecología Aplicada 5(1-2): 149-155.

Rojek, J., M. Kozieradzka-Kiszkurno, M. Kapusta, A. Aksmann, D. Jacewicz, J. Dzon et al. 2019. The effect of vanadium (IV) complexes on development of Arabidopsis thaliana subjected to H2O2-induced stress. Funct. Plant. Biol. 46(10): 942–961.

Ruiz-Olivares, A., R. Carrillo-Gonzales, R.M. Gonzales-Chávez y R. Soto. 2013. Potencial de ricino (Ricinus communis L.) para la fitorremediación de relaves de minas y producción de aceite. J. Environmental Management 114: 316 -323.

Sánchez-Crespo, G. 1998. Muestreo sistemático con intervalo de selección variable. Estadística Española 40(143): 5-31.

Santos, E., M. Abreu y M. Magalhaes. 2016. Cistus ladanifer phytostabilizing soils contaminated with non-essential chemical elements. Ecological Engineering 94: 107-116.

Shu, W., Z. Ye, C. Lan, Z. Zhang y M. Wong. 2002. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ. Pollution 120: 445- 453.

Soler, P., J. Berroterán, J. Gil y R. Acosta. 2012. Índice valor de importancia, diversidad y similaridad florística de especies leñosas en tres ecosistemas de los llanos centrales de Venezuela. Agronomía Tropical 62(1-4): 25-38.

Wiesmair, M., A. Otte y R. Waldhardt. 2017. Relationships between plant diversity, vegetation cover, and site conditions: implications for grassland conservation in the Greater Caucasus. Biodiversity and Conservation 26(2): 273-291.

Yaranga, R., M. Custodio, F. Chanamé y R. Pantoja. 2018. Diversidad florística de pastizales según formación vegetal en la subcuenca del río Shullcas, Junín, Perú. Scientia Agropecuaria 9(4): 511- 517.

Yarupaitán, G. y J. Albán. 2003. Flora silvestre de los Andes centrales del Perú: un estudio en la zona de Quilcas, Junín. Revista Peruana de Biología 10(2): 155-162.

Yoon, J., X. Cao, Q. Zhou y L. Ma. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment 368(2-3): 456-464.

Yoshimura, E., T. Nakagava y S. Mori. 2003. Distribution and chemical forms of aluminum-tolerant rice cultivar grown with or without phosfate pretreatment. Comunications in Soil Science and Plant Analysis 34(11-12): 1549-1555.

Zine, H., S. Elgadi, R. Hakkou, E. Papazoglou, L. Midhat y A. Ouhammou. 2021. Wild plants for the phytostabilization of phosphate mine waste in semi-arid environments: a field experiment. Minerals 11(42): 1-15.

Published

2021-08-24

How to Cite

Martínez-Manchego, L., Sarmiento-Sarmiento, G., & Bocardo-Delgado, E. (2021). Native plant species with potential for the phytoremediation of high-andean soils contaminated by residues from mining activity. Bioagro, 33(3), 161-170. https://doi.org/10.51372/bioagro333.2