Residuality and dissipation of lufenuron applied to peas in a semi-arid zone and hazard and risk index for ingestion

Authors

DOI:

https://doi.org/10.51372/bioagro352.6

Keywords:

Pesticide, Pisum sativum, safety

Abstract

The frequent application of pesticides in horticultural crops can generate residues with adverse consequences on the health of consumers. The objective of this research was to determine the residual and dissipation of lufenuron applied on peas (Pisum sativum L.), and its hazard and risk index by ingestion. The study was carried out in an open field in a semi-arid zone located in Arequipa, Peru. The treatments were the application of three doses of the active ingredient lufenuron (12, 24 and 30 g·ha-1) in two opportunities (every 4 and 8 days), conforming six treatments applied via foliar in a completely randomized design, with three replications (18 plots). Lufenuron residues were detected in pea pods and grains by HPLC in samples collected 4, 8 and 16 days after the last application. Dissipation kinetics, half-life, ingestion hazard or health hazard index (HI) were calculated. The highest half-life values were 13.4 days in pods and 4.8 days in grains with the dose 24 g·ha-1 and frequency of 8 days. The application frequency was more relevant than the lufenuron dose, and the difference was detected at 4 days after the last application. It was found that lufenuron residues in grains at 4 days of sampling exceeded the maximum residue limits in all treatments; however, under the conditions of this trial, ingestion of pea grains with lufenuron residues did not represent a health hazard and risk of population.

Downloads

Download data is not yet available.

References

Aguirre, L., F. García, J. García, M. Illera, M. Juncabella, M. Lizondo et al. 2001. Validación de métodos analíticos. Asociación Española de Farmacéuticos de la Industria. Barcelona, España.

Anastassiadou, M., G. Bernasconi, A. Brancato, L. Carrasco, L. Ferreira, L. Greco et al. 2020. Setting of import tolerances for lufenuron in various commodities of plant and animal origin. EFSA Journal 18(8): 6228-6257.

AOAC. 2007. Official Method 2007.01 Pesticide residues in foods by acetonitrile. Extraction and partitioning with magnesium sulfate. Gas chromatography/mass spectro-metry and liquid chromategraphy/tandem mass spectrometry. First action 2007. 9 p.

Basal, W.T., A.R. Ahmed, A. Mahmoud, y A.R. Omar. 2020. Lufenuron induces reproductive toxicity and genotoxic effects in pregnant albino rats and their fetuses. Scientific Reports 10(1): 19544-19563.

Bondareva, L. y N. Fedorova. 2021. Pesticides: Behavior in agricultural soil and plants. Molecules 26(17): 5370-5384.

Castillo, B., J. Ruiz, M. Manrique y C. Pozo. 2020. Contaminación por plaguicidas agrícolas en los campos de cultivos en Cañete (Perú). Revista Espacios 41(10): 1-11.

Chandra, R., N. Sharpanabharathi, B. Prusty, P. Azeez y R. Kurakalva. 2021. Organochlorine pesticide residues in plants and their possible ecotoxicological and agri food impacts. Scientific Reports 11(1):17841-17850.

Chirinos, D., R. Castro, J. Cun, J. Castro, S. Peñarrieta, L. Solis y F. Geraud-Pouey. 2020. Insecticides and agricultural pest control: the magnitude of its use in crops in some provinces of Ecuador. Ciencia y Tecnología Agropecuaria 21(1): 84-99.

Delgado-Zegarra, J., A. Alvarez-Risco y J.A. Yañez. 2018. Uso indiscriminado de pesticidas y ausencia de control sanitario para el mercado interno en el Perú. Pan American Journal of Public Health 42: 1-6.

Dong, B., Q. Zhao y J. Hu. 2015. Dissipation kinetics of emamectin benzoate and lufenuron residues in cabbage grown under field conditions. Environmental Monitoring and Assessment 187(12): 1-11.

INEI (Instituto Nacional de Estadística e Informática). 2022. Catálogo de bases de datos. Lima, Perú. 35 p. https://n9.cl/nxd5e (consulta de agosto 7, 2022).

Khay, S., J.H. Choi, A.M. Abd El-Aty, M.I. Mamun, B.J. Park, A. Goudah et al. 2008. Dissipation behavior of lufenuron, benzoylphenylurea insecticide, in/on chinese cabbage applied by foliar spraying under greenhouse conditions. Bulletin of Environmental Contamination and Toxicology 81: 369-372.

Khazaal, S., N. El Darra, A. Kobeissi, R. Jammoul y A. Jammoul. 2022. Risk assessment of pesticide residues from foods of plant origin in lebanon. Food Chemistry 374: 131676-131685.

Lee, M. y J.S. Kim. 2016. Pesticide residues in chili pepper seeds and their transfer into the seed oil. Korean Journal of Food Science and Technology 48(4): 317-322.

Li, K., W. Chen, P. Deng, X. Luo, Z. Xiong, Z. Li, Y. Ning, Y. Liu y A. Chen. 2022. Dissipation, residues and risk assessment of lufenuron during kumquat growing and processing. Journal of Food Composition and Analysis 112: 104643-104649.

Malhat, F., M. Almaz, M. Arief, K. El-Din y M. Fathy. 2012. Residue and dissipation dynamics of lufenuron in tomato fruit using QuEChERS methodology. Bulletin of Environmental Contamination and Toxicology 89(5): 1037-1039.

Minut, M., M. Rosca, R. Hlihor, P. Cozma y M. Gavrilescu. 2020. Modelling of health risk associated with the intake of pesticides from Romanian fruits and vegetables. Sustainability 12: 10035-10055.

Morera, I. 2015. Identificación de principios activos de plaguicidas en frutas, hortalizas y granos básicos en Costa Rica: Una propuesta para la implementación de nuevas metodologías de análisis. Revista Pensamiento 15(25): 155-171.

Nahar, K.M., M.S.I. Khan, M. Habib, S.M. Hossain, M.D. Prodhan y M.A. Islam. 2020. Health risk assessment of pesticide residues in vegetables collected from northern part of Bangladesh. Food Research 4(6): 2281-2288.

Nisha, U.S., M.S.I. Khan, M.D. Prodhan, I.M. Meftaul, N. Begum, A. Parven et al. 2021. Quantification of pesticide residues in fresh vegetables available in local markets for human consumption and the associated health risks. Agronomy 11(9): 1804-1815.

Osaili, T., M. Al, D. Dhanasekaran, W. Bani, H. Al-Ali, A. Al-Ali et al. 2022. Pesticide residues in fresh vegetables imported into the United Arab Emirates. Food Control 133(2): 108663-108674.

Park, D., Y. Yang, Y. Lee, S. Han, H. Kim, S. Kim et al. 2021. Pesticide residues and risk assessment from monitoring programs in the largest production area of leafy vegetables in South Korea: A 15-year study. Foods 10(2): 425-442.

Parven, A., S. Islam, M. Dalower, K. Venkateswarlu, M. Megharaj, y I. Meftaul. 2021. Human health risk assessment through quantitative screening of insecticide residues in two green beans to ensure food safety. Journalof Food Composition and Analysis 103: 104121-104127.

Pereira, P., C. Parente, G. Carvalho, J. Torres, R. Meire, P. Dorneles y O. Malm. 2021. A review on pesticides in flower production: A push to reduce human exposure and environmental contamination. Environmental Pollution 289: 117817-117832.

Pérez, A., E. Navarro y E. Miranda. 2015. Residuos de plaguicidas en hortalizas: Problemática y riesgo en México. Revista internacional de contaminación ambiental 29(2): 45-64.

Tang, H., L. Ma, J. Huang, Y. Li, Z. Liu, D. Meng, G. Wen, M. Dong, W. Wang y L. Zhao. 2021. Residue behavior and dietary risk assessment of six pesticides in pak choi using QuEChERS method coupled with UPLC-MS/MS. Ecotoxicology and Environmental Safety 213: 112022-112029.

Zheng, L., R. Yang, B. Li, y P. Liu. 2009. Residues and degradation of lufenuron in cotton and soil. Journal of Ecology and Rural Environment 25(3): 109-112.

Zikankuba, V.L., G. Mwanyika, J. Ntwenya y A. James. 2019. Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food and Agriculture 5(1): 1544-1559.

Published

2023-04-30

How to Cite

Álvarez-Vilca, J., Sarmiento-Sarmiento, G., Mena-Chacón, L., & Lipa-Mamani, L. (2023). Residuality and dissipation of lufenuron applied to peas in a semi-arid zone and hazard and risk index for ingestion. Bioagro, 35(2), 135-146. https://doi.org/10.51372/bioagro352.6

Issue

Section

Artículos