Growth and phenolic compounds in cilantro as a function of the ionic strength of the nutrient solution

Authors

DOI:

https://doi.org/10.51372/bioagro381.1

Keywords:

Coriandrum sativum L., electrical conductivity, hydroponics, secondary metabolites

Abstract

Cilantro (Coriandrum sativum L.) is widely used in culinary, pharmaceutical, and cosmetic industries. Proper nutritional management is essential for the growth and quality of plants in hydroponic cultivation. This study evaluated the growth, macronutrient content, and phenolic compounds in cilantro under different concentrations of nutrient solutions. The experiment, conducted in a greenhouse, followed a randomized block design with six treatments (25% to 150% of Hoagland and Arnon ionic strength) and five replicates. Plants were harvested 60 days after sowing for analysis of height, dry mass, leaf area, macronutrients, and total phenols. Maximum growth occurred between 80% and 100% ionic strength. Nitrogen (N) and potassium (K) showed higher concentrations at 85% and 63.5%, respectively, while phosphorus (P) increased up to the maximum concentration, corresponding to 150% of the ionic strength, and calcium (Ca), magnesium (Mg), and sulfur (S) decreased at higher ionic strength. The content of phenolic compounds decreased with increasing ionic strength. It is concluded that ionic strength directly influences the growth, nutrition, and quality of cilantro, requiring a nutritional balance to maximize production and the quality of secondary metabolites.

Downloads

Download data is not yet available.

References

Alberici, A., E. Quattrini, M. Penati, L. Martinetti, P. Marino Gallina and A. Ferrante. 2008. Effect of the reduction of nutrient solution concentration on leafy vegetables quality grown in floating system. Acta Horticulturae 801: 1167-1176.

Arnoso, B.J.M., G.F. Costa and B. Schmidt. 2019. Biodisponibilidade e classificação de compostos fenólicos. Nutrição Brasil 18(1): 39-48.

Ashraf, M.A., M. Iqbal, R. Rasheed, I. Hussain, M. Riaz and M.S. Arif. 2018. Environmental stress and secondary metabolites in plants: an overview. In: Parvaiz Ahmad, Mohammad Abass Ahanger, Vijay Pratap Singh, Durgesh Kumar Tripathi, Pravej Alam and Mohammed Nasser Alyemeni (ed.). Plant Metabolites and Regulation under Environmental Stress. Academic Press, Ch. 8, pp. 153-167.

Bonasia, A., C. Lazzizera, A. Elia and G. Conversa. 2017. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Frontiers in Plant Science 8: 300.

Borges, L.P. and V.A. Amorim. 2020. Metabólitos secundários de plantas. Revista Agrotecnologia 11(1): 54-67.

Calori, A.H., T.L. Factor, S. Lima Junior, L.A. Moraes, P.J. Barbosa, S.W. Tivelli et al. 2014. Electrical conductivity and plant spacing on baby leaf table beet and lettuce production. Horticultura Brasileira 32(4): 426-433.

Carmo, A.P.M., M.S.M. Freitas, L.C. Machado, L. dos Santos Silva, D.J.C. Petri, J.C. Vimercati et al. 2024. Electrical conductivity of nutrient solutions affects the growth, nutrient levels, and content and composition of essential oils of Acmella oleracea (L.) RK Jansen from southeastern Brazil. Journal of Agriculture and Food Research 15: 100968.

Daflon, D.S.G., M.S.M. Freitas, A.J.C. Carvalho, P.H. Monnerat and C.L. Prins. 2014. Sintomas visuais de deficiência de macronutrientes e boro em coentro. Horticultura Brasileira 32(1): 28-34.

Deus, V.L., A.P. Santos, J.F. Walker, L.G. Santana Neta and L.S. Souza. 2019. Compostos fenólicos em hortaliças cultivadas nos sistemas convencional e orgânico: uma revisão. Brazilian Journal of Health and Pharmacy 1(1): 70-84.

Ferreira, E.R., L.A. Bezerra, T. Oliveira, J. Carvalho and R. Silva. 2017. Benefícios do cultivo hidropônico em ambiente protegido. Revista Conexão Eletrônica 14: 485-491.

Filgueira, F.A.R. 2013. Novo manual de olericultura: agrotecnologia moderna na produção e comercialização de hortaliças. 3. ed. rev. e ampl. Viçosa, MG: Editora UFV. 421p.

Filgueiras, R.C., H.W. Takahashi and E.R.Y. Beninni. 2002. Produção de alface hidropônico em diferentes condutividades elétricas. Semina: Ciências Agrárias 23(2): 157-164.

Freitas, M.S.M., Y.S. Gonçalves, T.C. Lima, P.C. Santos, D.A. Peçanha, M.E. Vieira et al. 2020. Potassium sources and doses in coriander fruit production and essential oil content. Horticultura Brasileira 38: 268-273.

Furlani, P.R., D. Bolonhezi, L.C.P. Silveira and V. Faquin. 1999. Nutrição mineral de hortaliças, preparo e manejo de soluções nutritivas. Informe Agropecuário 20(200/201): 90-98.

Furlong, E.B., E. Colla, D.S. Bortolato, A.L.M. Baisch and L.A. Souza-Soares. 2003. Avaliação do potencial de compostos fenólicos em tecidos vegetais. Vetor 13: 105-114.

Grattan, S.R. and C.M. Grieve. 1999. Salinity mineral nutrient relations in horticultural crops. Scientia Horticulturae 78: 127-157.

Guimarães, R.Q., F.C. Sterzelecki, R.J.F. Souza, T.C.C. de Carvalho, A.L. Silva, M.S. Owatari et al. 2024. Integrated cultivation of tambaqui (Colossoma macropomum) with coriander (Coriandrum sativum L.) grown at different plant density. Journal of Cleaner Production 470: 143346.

Hoagland, D.R. and J.P. Arnon. 1950. The water culture method for growing plants without soils. California Agricultural Experimental Station, Berkeley. 347p.

Isah, T., S. Umar, A. Mujib, M. Sharma, A.K. Sharma, P. Zafar et al. 2018. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell, Tissue and Organ Culture 132: 239-265.

Jackson, M.L. 1965. Light Microscope Determination for Soils. In: Soil Chemical Analysis. Prentice Hall, New Jersey. 498p

Laribi, B., K. Kouki, M. M’hamdi and T. Bettaieb. 2015. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia 103: 9-26.

Lu, N., E.L. Bernardo, C. Tippayadarapanich, M. Takagaki, N. Kagawa and W. Yamori. 2017. Growth and accumulation of secondary metabolites in Perilla as affected by photosynthetic photon flux density and electrical conductivity of the nutrient solution. Frontiers in Plant Science 8: 708.

Luz, J.M.Q., L.V. Andrade, F.F. Dias, M.A.D. Silva, L.L. Haber and R.C. Oliveira. 2012. Produção hidropônica de coentro e salsa crespa sob concentrações de solução nutritiva e posições das plantas nos perfis hidropônicos. Bioscience Journal 28(4): 589-597.

Mallik, S., A.B. Sharangi and T. Sarkar. 2020. Phytochemicals of Coriander, Cumin, Fenugreek, Fennel and Black Cumin: A Preliminary Study. National Academy Science Letters 43: 477-480.

Matasyoh, J.C., Z.C. Maiyo, R.M. Ngure and R. Chepkorir. 2009. Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chemistry 113(2): 526-529.

Moya, C., E. Oyanedel, G. Verdugo, M.F. Flores, M. Urrestarazu and J.E. Álvaro. 2017. Increased electrical conductivity in nutrient solution management enhances dietary and organoleptic qualities in soilless culture tomato. HortScience 52: 868-872.

Nguyen, T.K.L., M.-S. Yeom and M.-M. Oh. 2021. Effect of a newly-developed nutrient solution and electrical conductivity on growth and bioactive compounds in Perilla frutescens var. crispa. Agronomy 11(5): 932.

Oliveira, F.A., M.L.S. Neta, M.K.T. Oliveira, R.T. Silva, D.C. Martins and J.P.B.M. Costa. 2016. Production of coriander in substrate fertigated with increasing nutrient concentrations. Revista Ciência Agronômica 59(3): 275-279.

Önder, A. 2018. Coriander and Its Phytoconstituents for the Beneficial Effects. In: Hany A. El-Shemy (ed.). Potential of Essential Oils. Ch. 9, pp. 167-178.

Peters, J.B. 2005. Wisconsin Procedures for Soil Testing, Plant Analysis and Feed & Forage Analysis: Plant Analysis. Department of Soil Science, College of Agriculture and Life Sciences, University of Wisconsin-Extension, Madison.

Portela, I.P., R.M.N. Peil and C.V. Rombaldi. 2012. Efeito da concentração de nutrientes no crescimento, produtividade e qualidade de morangos em hidroponia. Horticultura Brasileira 30(2): 266-273.

Rebouças, J.R.L., M. Ferreira Neto, N. da S. Dias, O.N. de Souza Neto, A.A. Diniz and R.B. de Lira. 2013. Cultivo hidropônico de coentro com uso de rejeito salino. Irriga 18(4): 624-634.

Ren, X., N. Lu, W. Xu, Y. Zhuang and M. Takagaki. 2022. Optimization of the yield, total phenolic content, and antioxidant capacity of basil by controlling the electrical conductivity of the nutrient solution. Horticulturae 8(3): 216.

Safdar, H., A. Amin, Y. Shafiq, A. Ali, R. Yasin, A. Shoukat et al. 2019. A review: Impact of salinity on plant growth. Nature and Science 17(1): 34-40.

Scandar, S., C. Zadra and M.C. Marcotullio. 2023. Coriander (Coriandrum sativum) polyphenols and their nutraceutical value against obesity and metabolic syndrome. Molecules 28(10): 4187.

Sharma, M.M. and R.K. Sharma. 2012. Coriander. In: K.V. Peter (ed.). Handbook of Herbs and Spices (Second Edition). Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing. pp. 216-249.

Sharma, N., S. Acharya, K. Kumar, N. Singh and O.P. Chaurasia. 2018. Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation 17(4): 364-371.

Silva, F.V., S.N. Duarte, C.J.G. de S. Lima, N.S. Dias, R.S. da S. Santos and P.R.S. Medeiros. 2013. Cultivo hidropônico de rúcula utilizando solução nutritiva salina. Revista Brasileira de Ciências Agrárias 8(3): 476-482.

Silva, M.G., T.M. Soares, H.R. Gheyi, I.P. Costa and R.S. Vasconcelos. 2020. Growth, production and water consumption of coriander grown under different recirculation intervals and nutrient solution depths in hydroponic channels. Emirates Journal of Food and Agriculture 32(4): 281-294.

Souza, C.A., A.O. Silva, J.S.G. Santos, C.F. Lacerda and G.F. Silva. 2020a. Production of watercress with brackish water and different circulation times for the nutrient solution. Revista Ciência Agronômica 51(3): e20196775.

Souza, C.D. da S., G.F. da Silva, S.M. de Menezes, J.E.F. de Morais, J.A. Santos Júnior and A.O. da Silva. 2020b. Nutrient and inorganic solute (Na+ and Cl–) content in green onion plants under hydroponic cultivation using brackish water. Ciência e Agrotecnologia 44.

Tungmunnithum, D., A. Thongboonyou, A. Pholboon and A. Yangsabai. 2018. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 5(3): 93.

Vasconcelos, L.S.B., E.B. Neto, C.W.A. Nascimento and L.P. Barreto. 2014. Desenvolvimento de plantas de coentro em função da força iônica da solução nutritiva. Pesquisa Agropecuária Pernambucana 19(1): 11-19.

Wei, S., L. Wei, B. Xie, J. Li, J. Lyu, S. Wang et al. 2024. Characterization of volatile profile from different coriander (Coriandrum sativum L.) varieties via HS-SPME/GC–MS combined with E-nose analyzed by chemometrics. Food Chemistry 457: 140128.

Zonta, E.P., A.A. Machado and P. Silveira Junior. 1984. Sistema de análises estatísticas para microcomputadores (SANEST). UFP, Pelotas. 151p.

Published

2026-01-01

How to Cite

Barbosa da Cruz, I., Martins do Carmo, A. P., Capato Lima, T., Vieira, M. E., Alves Peçanha, D., & Mendonça Freitas, M. S. (2026). Growth and phenolic compounds in cilantro as a function of the ionic strength of the nutrient solution. Bioagro, 38(1), 397-406. https://doi.org/10.51372/bioagro381.1

Issue

Section

Artículos