Crecimiento y compuestos fenólicos en el cilantro en función de la fuerza iónica de la solución nutritiva

Autores/as

DOI:

https://doi.org/10.51372/bioagro381.1

Palabras clave:

Coriandrum sativum L., conductividad eléctrica, hidroponía, metabolitos secundarios

Resumen

El cilantro (Coriandrum sativum L.) posee amplio uso doméstico, así como en las industrias farmacéutica y cosmética. Por tanto, un manejo nutricional adecuado es esencial para el crecimiento y la calidad de las plantas en cultivos hidropónicos. Se evaluó el crecimiento, los contenidos de macronutrientes y de compuestos fenólicos del cilantro bajo diferentes concentraciones de solución nutritiva. El experimento fue realizado en un invernadero siguiendo un diseño de bloques al azar con seis tratamientos (25 a 150 % de la fuerza iónica de Hoagland y Arnon) y cinco repeticiones. Las plantas fueron cosechadas a los 60 días después de la siembra para analizar la altura, la masa seca, el área foliar, los macronutrientes y los fenoles totales. El crecimiento máximo se observó entre el 80 y 100 % de la fuerza iónica (FI). Por su parte, el N y el K presentaron mayores contenidos al 85 y 63,5 %, respectivamente, mientras que el P aumentó hasta la concentración máxima, correspondiente al 150 % de FI; y el Ca, Mg y S disminuyeron en los valores más altos. El contenido de compuestos fenólicos se redujo con el aumento de FI. Se concluyó que esta variable influye directamente en el crecimiento, la nutrición y la calidad del cilantro, siendo necesario un equilibrio nutricional para maximizar la producción y la calidad de los metabolitos secundarios.

Descargas

La descarga de datos todavía no está disponible.

Citas

Alberici, A., E. Quattrini, M. Penati, L. Martinetti, P. Marino Gallina and A. Ferrante. 2008. Effect of the reduction of nutrient solution concentration on leafy vegetables quality grown in floating system. Acta Horticulturae 801: 1167-1176.

Arnoso, B.J.M., G.F. Costa and B. Schmidt. 2019. Biodisponibilidade e classificação de compostos fenólicos. Nutrição Brasil 18(1): 39-48.

Ashraf, M.A., M. Iqbal, R. Rasheed, I. Hussain, M. Riaz and M.S. Arif. 2018. Environmental stress and secondary metabolites in plants: an overview. In: Parvaiz Ahmad, Mohammad Abass Ahanger, Vijay Pratap Singh, Durgesh Kumar Tripathi, Pravej Alam and Mohammed Nasser Alyemeni (ed.). Plant Metabolites and Regulation under Environmental Stress. Academic Press, Ch. 8, pp. 153-167.

Bonasia, A., C. Lazzizera, A. Elia and G. Conversa. 2017. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Frontiers in Plant Science 8: 300.

Borges, L.P. and V.A. Amorim. 2020. Metabólitos secundários de plantas. Revista Agrotecnologia 11(1): 54-67.

Calori, A.H., T.L. Factor, S. Lima Junior, L.A. Moraes, P.J. Barbosa, S.W. Tivelli et al. 2014. Electrical conductivity and plant spacing on baby leaf table beet and lettuce production. Horticultura Brasileira 32(4): 426-433.

Carmo, A.P.M., M.S.M. Freitas, L.C. Machado, L. dos Santos Silva, D.J.C. Petri, J.C. Vimercati et al. 2024. Electrical conductivity of nutrient solutions affects the growth, nutrient levels, and content and composition of essential oils of Acmella oleracea (L.) RK Jansen from southeastern Brazil. Journal of Agriculture and Food Research 15: 100968.

Daflon, D.S.G., M.S.M. Freitas, A.J.C. Carvalho, P.H. Monnerat and C.L. Prins. 2014. Sintomas visuais de deficiência de macronutrientes e boro em coentro. Horticultura Brasileira 32(1): 28-34.

Deus, V.L., A.P. Santos, J.F. Walker, L.G. Santana Neta and L.S. Souza. 2019. Compostos fenólicos em hortaliças cultivadas nos sistemas convencional e orgânico: uma revisão. Brazilian Journal of Health and Pharmacy 1(1): 70-84.

Ferreira, E.R., L.A. Bezerra, T. Oliveira, J. Carvalho and R. Silva. 2017. Benefícios do cultivo hidropônico em ambiente protegido. Revista Conexão Eletrônica 14: 485-491.

Filgueira, F.A.R. 2013. Novo manual de olericultura: agrotecnologia moderna na produção e comercialização de hortaliças. 3. ed. rev. e ampl. Viçosa, MG: Editora UFV. 421p.

Filgueiras, R.C., H.W. Takahashi and E.R.Y. Beninni. 2002. Produção de alface hidropônico em diferentes condutividades elétricas. Semina: Ciências Agrárias 23(2): 157-164.

Freitas, M.S.M., Y.S. Gonçalves, T.C. Lima, P.C. Santos, D.A. Peçanha, M.E. Vieira et al. 2020. Potassium sources and doses in coriander fruit production and essential oil content. Horticultura Brasileira 38: 268-273.

Furlani, P.R., D. Bolonhezi, L.C.P. Silveira and V. Faquin. 1999. Nutrição mineral de hortaliças, preparo e manejo de soluções nutritivas. Informe Agropecuário 20(200/201): 90-98.

Furlong, E.B., E. Colla, D.S. Bortolato, A.L.M. Baisch and L.A. Souza-Soares. 2003. Avaliação do potencial de compostos fenólicos em tecidos vegetais. Vetor 13: 105-114.

Grattan, S.R. and C.M. Grieve. 1999. Salinity mineral nutrient relations in horticultural crops. Scientia Horticulturae 78: 127-157.

Guimarães, R.Q., F.C. Sterzelecki, R.J.F. Souza, T.C.C. de Carvalho, A.L. Silva, M.S. Owatari et al. 2024. Integrated cultivation of tambaqui (Colossoma macropomum) with coriander (Coriandrum sativum L.) grown at different plant density. Journal of Cleaner Production 470: 143346.

Hoagland, D.R. and J.P. Arnon. 1950. The water culture method for growing plants without soils. California Agricultural Experimental Station, Berkeley. 347p.

Isah, T., S. Umar, A. Mujib, M. Sharma, A.K. Sharma, P. Zafar et al. 2018. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell, Tissue and Organ Culture 132: 239-265.

Jackson, M.L. 1965. Light Microscope Determination for Soils. In: Soil Chemical Analysis. Prentice Hall, New Jersey. 498p

Laribi, B., K. Kouki, M. M’hamdi and T. Bettaieb. 2015. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia 103: 9-26.

Lu, N., E.L. Bernardo, C. Tippayadarapanich, M. Takagaki, N. Kagawa and W. Yamori. 2017. Growth and accumulation of secondary metabolites in Perilla as affected by photosynthetic photon flux density and electrical conductivity of the nutrient solution. Frontiers in Plant Science 8: 708.

Luz, J.M.Q., L.V. Andrade, F.F. Dias, M.A.D. Silva, L.L. Haber and R.C. Oliveira. 2012. Produção hidropônica de coentro e salsa crespa sob concentrações de solução nutritiva e posições das plantas nos perfis hidropônicos. Bioscience Journal 28(4): 589-597.

Mallik, S., A.B. Sharangi and T. Sarkar. 2020. Phytochemicals of Coriander, Cumin, Fenugreek, Fennel and Black Cumin: A Preliminary Study. National Academy Science Letters 43: 477-480.

Matasyoh, J.C., Z.C. Maiyo, R.M. Ngure and R. Chepkorir. 2009. Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chemistry 113(2): 526-529.

Moya, C., E. Oyanedel, G. Verdugo, M.F. Flores, M. Urrestarazu and J.E. Álvaro. 2017. Increased electrical conductivity in nutrient solution management enhances dietary and organoleptic qualities in soilless culture tomato. HortScience 52: 868-872.

Nguyen, T.K.L., M.-S. Yeom and M.-M. Oh. 2021. Effect of a newly-developed nutrient solution and electrical conductivity on growth and bioactive compounds in Perilla frutescens var. crispa. Agronomy 11(5): 932.

Oliveira, F.A., M.L.S. Neta, M.K.T. Oliveira, R.T. Silva, D.C. Martins and J.P.B.M. Costa. 2016. Production of coriander in substrate fertigated with increasing nutrient concentrations. Revista Ciência Agronômica 59(3): 275-279.

Önder, A. 2018. Coriander and Its Phytoconstituents for the Beneficial Effects. In: Hany A. El-Shemy (ed.). Potential of Essential Oils. Ch. 9, pp. 167-178.

Peters, J.B. 2005. Wisconsin Procedures for Soil Testing, Plant Analysis and Feed & Forage Analysis: Plant Analysis. Department of Soil Science, College of Agriculture and Life Sciences, University of Wisconsin-Extension, Madison.

Portela, I.P., R.M.N. Peil and C.V. Rombaldi. 2012. Efeito da concentração de nutrientes no crescimento, produtividade e qualidade de morangos em hidroponia. Horticultura Brasileira 30(2): 266-273.

Rebouças, J.R.L., M. Ferreira Neto, N. da S. Dias, O.N. de Souza Neto, A.A. Diniz and R.B. de Lira. 2013. Cultivo hidropônico de coentro com uso de rejeito salino. Irriga 18(4): 624-634.

Ren, X., N. Lu, W. Xu, Y. Zhuang and M. Takagaki. 2022. Optimization of the yield, total phenolic content, and antioxidant capacity of basil by controlling the electrical conductivity of the nutrient solution. Horticulturae 8(3): 216.

Safdar, H., A. Amin, Y. Shafiq, A. Ali, R. Yasin, A. Shoukat et al. 2019. A review: Impact of salinity on plant growth. Nature and Science 17(1): 34-40.

Scandar, S., C. Zadra and M.C. Marcotullio. 2023. Coriander (Coriandrum sativum) polyphenols and their nutraceutical value against obesity and metabolic syndrome. Molecules 28(10): 4187.

Sharma, M.M. and R.K. Sharma. 2012. Coriander. In: K.V. Peter (ed.). Handbook of Herbs and Spices (Second Edition). Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing. pp. 216-249.

Sharma, N., S. Acharya, K. Kumar, N. Singh and O.P. Chaurasia. 2018. Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation 17(4): 364-371.

Silva, F.V., S.N. Duarte, C.J.G. de S. Lima, N.S. Dias, R.S. da S. Santos and P.R.S. Medeiros. 2013. Cultivo hidropônico de rúcula utilizando solução nutritiva salina. Revista Brasileira de Ciências Agrárias 8(3): 476-482.

Silva, M.G., T.M. Soares, H.R. Gheyi, I.P. Costa and R.S. Vasconcelos. 2020. Growth, production and water consumption of coriander grown under different recirculation intervals and nutrient solution depths in hydroponic channels. Emirates Journal of Food and Agriculture 32(4): 281-294.

Souza, C.A., A.O. Silva, J.S.G. Santos, C.F. Lacerda and G.F. Silva. 2020a. Production of watercress with brackish water and different circulation times for the nutrient solution. Revista Ciência Agronômica 51(3): e20196775.

Souza, C.D. da S., G.F. da Silva, S.M. de Menezes, J.E.F. de Morais, J.A. Santos Júnior and A.O. da Silva. 2020b. Nutrient and inorganic solute (Na+ and Cl–) content in green onion plants under hydroponic cultivation using brackish water. Ciência e Agrotecnologia 44.

Tungmunnithum, D., A. Thongboonyou, A. Pholboon and A. Yangsabai. 2018. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 5(3): 93.

Vasconcelos, L.S.B., E.B. Neto, C.W.A. Nascimento and L.P. Barreto. 2014. Desenvolvimento de plantas de coentro em função da força iônica da solução nutritiva. Pesquisa Agropecuária Pernambucana 19(1): 11-19.

Wei, S., L. Wei, B. Xie, J. Li, J. Lyu, S. Wang et al. 2024. Characterization of volatile profile from different coriander (Coriandrum sativum L.) varieties via HS-SPME/GC–MS combined with E-nose analyzed by chemometrics. Food Chemistry 457: 140128.

Zonta, E.P., A.A. Machado and P. Silveira Junior. 1984. Sistema de análises estatísticas para microcomputadores (SANEST). UFP, Pelotas. 151p.

Publicado

2026-01-01

Cómo citar

Barbosa da Cruz, I., Martins do Carmo, A. P., Capato Lima, T., Vieira, M. E., Alves Peçanha, D., & Mendonça Freitas, M. S. (2026). Crecimiento y compuestos fenólicos en el cilantro en función de la fuerza iónica de la solución nutritiva. Bioagro, 38(1), 397-406. https://doi.org/10.51372/bioagro381.1

Número

Sección

Artículos