Rol del silicio en el incremento de la tolerancia al arsénico en plántulas de arroz mediante el refuerzo de la defensa antioxidativa

Autores/as

  • Fujian Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P.R.China
  • Fujian Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P.R.China
  • Fujian Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P.R.China
  • Fujian Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P.R.China

Palabras clave:

Antioxidantes, elemento tóxico, enzimas, resistencia de las plantas

Resumen

El arsénico es un metaloide tóxico que puede causar graves problemas a las plantas. Por su parte, el silicio es un elemento beneficioso, que ayuda a desarrollar resistencia en condiciones de estrés. El objetivo del presente estudio fue evaluar el efecto del silicio y el arsénico sobre diversos antioxidantes enzimáticos y no enzimáticos, en brotes y raíces de plántulas de dos genotipos de arroz (Du-WT y DU-OE), durante 1 y 2 semanas. Las plántulas fueron expuestas a cuatro medios de cultivo diferentes: a) Control; b) 0,70 mM Si+no As; c) 30 μM As+no Si; d) 30 μM As+0.70 mM Si. Los medios de cultivo y los genotipos de arroz se organizaron en un factorial de 8 tratamientos con three repeticiones. La respuesta al silicio, el arsénico, y la combinación de ellos en plantas sin estrés siguió patrones similares y varió según el antioxidante. La adición de As siempre disminuyó los valores, pero junto con el silicio produjo una recuperación parcial de los mismos. El patrón de respuesta de la planta fue similar, independientemente del tejido o el tiempo de exposición al As. El arroz Dullar transgénico, bajo condiciones de estrés, activó el nivel más alto de antioxidantes, especialmente cuando las plántulas fueron tratadas con silicio.

Descargas

La descarga de datos todavía no está disponible.

Citas

1. Abreu, I.A. and D.E. Cabelli. 2010. Superoxide dismutases- a review of the metal-associated mechanistic variations. Biochimica et Biophysica Acta -Proteins Proteomics 1804: 263-274.

2. Ando, K., M. Honma, S. Chiba, S. Tahara and J. Mizutani. 1988. Glutathione transferase from Mucor javanicus. J. Agricultural Biological Chemistry 52: 135-139.

3. Azevedo, M.M., A. Carvalho, C. Pascoal, F. Rodrigues and F. Cássio. 2007. Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. J. Science of the Total Environment 377: 233-243.

4. Begum, M.C., M.S. Islam, M. Islam, R. Amin, M.S. Parvez and A.H. Kabir. 2016. Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). J. Plant Physiology Biochemistry 104: 266-277.

5. Cobbett, C. and P. Goldsbrough. 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology 53: 159-182.

6. Cummins, I., D.P. Dixon, S. Freitag-Pohl, M. Skipsey and R. Edwards. 2011. Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metabolism Reviews 43: 266-280.

7. Ding, N., A. Wang, X. Zhang, Y. Wu, R. Wang, H. Cui et al. 2017. Identification and analysis of glutathione S-transferase gene family in sweet potato reveal divergent GST-mediated networks in aboveground and underground tissues in response to abiotic stresses. J BMC Plant Biology 17: 225.

8. Esposito, J.B.N., B.P. Esposito, R.A. Azevedo, L.S. Cruz, L.C. da Silva and S.R. de Souza. 2015. Protective effect of Mn (III)–desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max “Sambaiba”. J. Environmental Science 22: 5315-5324.

9. Geng, A., X. Wang, L. Wu, F. Wang, Z. Wu, H. Yang et al..2018. Silicon improves growth and alleviates oxidative stress in rice seedlings (Oryza sativa L.) by strengthening antioxidant defense and enhancing protein metabolism under arsanilic acid exposure. J. Ecotoxicology Environmental Safety 158: 266-273.

10. Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. J. Plant Physiology Biochemistry 48: 909-930.

11. He, J., F. Chen, S. Chen, G. Lv, Y. Deng, W. Fang et al. 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J. Plant Physiology 168: 687-693.

12. Heath, R. and L. Packer. 1968. Photoper-oxidation in isolated chloroplast. I. Kinetics stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125(1): 189-98.

13. Ju, S., N. Yin, L. Wang, C. Zhang and Y. Wang. 2017. Effects of silicon on Oryza sativa L. seedling roots under simulated acid rain stress. PloS One 12(3): e0173378.

14. Kang, J., W. Zhao and X. Zhu. 2016. Silicon improves photosynthesis and strengthens enzyme activities in the C3 succulent xerophyte Zygophyllum xanthoxylum under drought stress. J. Plant Physiology 199: 76-86.

15. Khan, E. and M. Gupta. 2018. Arsenic-silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. J. Scientific Reports 8: 1-16.

16. Li-Ping, B., S. Fang-Gong, G. Ti-Da, S. Zhao-Hui, L. Yin-Yan and Z. Guang-Sheng. 2006. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere 16: 326-332.

17. Liu, T., S. Zhong, X. Liao, J. Chen, T. He, S. Lai and Y. Jia. 2015. A meta-analysis of oxidative stress markers in depression. PloS One 10(10): e0138904.

18. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. J. Plant Cell Physiology 22: 867-880.

19. Pan, W., C. Wu, S. Xue and W. Hartley. 2014. Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation. Environ. Sci. 26: 892-899.

20. Rahman, M.F., A. Ghosal, M.F. Alam and A.H. Kabir. 2017. Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon. J Ecotoxicology Environmental Safety 135: 165-172.

21. Rao, G.B., P.Y. PI and E.K. Syriac. 2017. Silicon nutrition in rice: A review. J. Pharmacognosy and Phytochemistry 6(6): 390-392.

22. Raza, M.M., S. Ullah, Z. Ahmad, S. Saqib, S. Ahmad, H.M. Bilal and F. Wali. 2016. Silicon mediated arsenic reduction in rice by limiting its uptake. Agricultural Sciences in China 7: 1.

23. Rodríguez-Lado, L., G. Sun, M. Berg, Q. Zhang, H. Xue, Q. Zheng and C.A. Jonson. 2013. Groundwater arsenic contamination throughout China. Science 341(6148): 866-868.

24. Sajedi, N.A., M.R. Ardakani, H. Madani, A. Naderi and M. Miransari. 2011. The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. J. Physiology Molecular Biology of Plants 17: 215-222.

25. Sedlak, J. and R.H. Lindsay. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. J. Analytical biochemistry 25: 192-205.

26. Shri, M., S. Kumar, D. Chakrabarty, P.K. Trivedi, S. Mallick, P. Misra et al. 2009. Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. J. Ecotoxicology Environmental Safety 72: 1102-1110.

27. Wang, S., F. Wang and S. Gao. 2015. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. J. Environmental Science Pollution Research 22: 2837-2845.

28. Xiang, C., B.L. Werner, M.C. E'Lise and D.J. Oliver. 2001. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. J. Plant Physiology 126: 564-574.

29. Yoshida, S., D.A. Forno, J. Cock and K. Gomez. 1976. Laboratory Manual for Physiological Studies of Rice: Int. Rice Res. Institute. Los Baños, Philippines. 83 p.

Publicado

2020-10-02

Cómo citar

Mohammad, Wenxiong, Wenshan, & Changxun. (2020). Rol del silicio en el incremento de la tolerancia al arsénico en plántulas de arroz mediante el refuerzo de la defensa antioxidativa. Bioagro, 32(3), 159-168. Recuperado a partir de https://revistas.uclave.org/index.php/bioagro/article/view/2775