Cambios en el contenido de compuestos fenólicos bajo diferentes sistemas de producción de arándanos

Autores/as

  • María D. López Dept. Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile.
  • Marcelo Illanes Dept. Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile.
  • Pamela Jara Dept. Animal Science, Fac. of Veterinary Medicine, Univ. de Concepción. Chillán, Chile.
  • Inés Figueroa Dept. Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile.
  • Susana Fischer Dept. Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile.
  • Rosemarie Wilckens Dept. Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile.
  • Humberto Serri Dept. Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile.
  • Mauricio Schoebitz Dept. Soil Science and Natural Resources, Faculty of Agronomy, Universidad de Concepción, Concepción, Chile.

Palabras clave:

Agricultura orgánica, bayas, cultivares, delfinidina-3-galactósido

Resumen

Las tendencias actuales en agricultura implican el uso de prácticas agrícolas destinadas a mejorar el valor nutricional de la fruta al afectar directamente el contenido de antioxidantes. Chile es el segundo país productor de arándanos más grande del mundo y el mayor país exportador del hemisferio sur. Por lo tanto, el propósito de este estudio fue evaluar si los sistemas de producción (orgánicos y convencionales) en dos temporadas consecutivas y dos zonas agroclimáticas diferentes (Valle Central y Piedemonte Andino) presentan diferencias en la concentración de los principales compuestos de polifenoles y antocianinas, así como la capacidad antioxidante en tres cultivares de arándanos ('Brigitta', 'Duke' y 'Legacy') cultivados en suelos andisoles. Los cultivares Legacy y Duke presentaron el mayor contenido de polifenoles y la mayor capacidad antioxidante, así como de importantes compuestos antioxidantes. Del mismo modo, tanto el contenido de polifenoles como la capacidad antioxidante alcanzaron valores superiores en los arándanos cultivados orgánicamente lo que significa que este sistema de producción representa un aspecto importante a considerar. Los resultados apoyan una expansión de la agricultura orgánica como estrategia para el logro de la calidad de los frutos en este tipo de suelos.

Descargas

La descarga de datos todavía no está disponible.

Citas

1. Azuma A., H. Yakushiji, Y. Koshita, S and Kobayashi. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236: 1067-1080.

2. Bastola, K. P., Y.N. Guragain, V. Bhadriraju and P.V. Vadlani. 2017. Evaluation of standards and interfering compounds in the determination of phenolics by Folin-Ciocalteau assay method for effective bioprocessing of biomass. American Journal of Analytical Chemistry 8: 416-431.

3. Benzie I.F and J.J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry 239(1): 70-76.

4. Buol S.W., R.J. Soutand, R.C. Graham and P.A. McDaniel. 2011. Soil genesis and classification. John Wiley and Sons. Iowa, State University Press.

5. Cacace J.E. and G. Mazza. 2003. Optimization of extraction of anthocyanins from black currants with aqueous ethanol. Journal of Food Science 68(1):240-248.

6. Cardeñosa V., A. Gironés-Vilaplana, J.L. Muriel, D.A. Moreno and J.M. Moreno-Rojas. 2016. Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.). Food Chem. 202: 276-283.

7. Chiabrando V. and G. Giacalone. 2015. Anthocyanins, phenolics and antioxidant capacity after fresh storage of blueberry treated with edible coatings. International Journal of Food Sciences and Nutrition 66(3): 248-253.

8. Giovanelli G. and S. Buratti. 2009. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem. 112: 903-908.

9. Giongo L., F. Ieri, U. Vrhovsek, M. Grisenti, F. Mattivi and M. Eccher. 2006. Characterization of Vaccinium Cultivars: Horticultural and antioxidant profile. Acta Hort. 715: 147-151.

10.Howard L.R., J.R. Clarck and C. Brownmiller. 2003. Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. J. Sci Food Agric. 83(12): 1238-1247.

11.Kalt W., A. Howell, J. Duy, C. Forney and J. McDonald. 2001. Horticultural factors affecting antioxidant capacity of blueberries and other small fruit. Hort Technology 11(4): 523-528.

12.Liu, W., D. Yin, N. Li, X. Hou, D. Wang, D. Li and J. Liu. 2016. Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticose L. and its quality assessment. Sci. Rep. 6: 28591.

13.Mena P., C. Garcia-Viguera, J. Navarro-Rico, D.A. Moreno, J. Bartual, D. Saura and N. Marti. 2011. Phytochemical characterization for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. J. Sci Food Agric. 91: 1893-1906.

14.Mikkonen T.P., K. Maata, A. Hukkanen, H. Kokko, A. Torronen, S. Karenlampi and R. Karjalainen. 2001. Flavonol content varies among black currant cultivars. J. Agric Food Chem. 49(7): 3274-3277.

15.Mitler R. 2006. Abiotic stress, the field environmental and stress combination. Trends in Plant Science 11(1): 15-19.

16.Moyer R.A., K. Hummer, C. Finn, B. Frei and R. Wrolstad. 2002. Anthocyanins, phenolics and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric Food Chem. 50(3): 519-525.

17.Ribera A.E., M. Reyes-Diaz, M. Alberdi, G.E. Zúñiga G.E. and Mora M.L. 2010. Antioxidant compounds in skun and pulp of fruits change among genotypes and maturity stages in highbush blueberry (Vaccinium corymbosum L.) grown in southern Chile. J. Soil Sci Plant Nutr. 10(4): 509-536.

18.Rodarte-Castrejón A.D., I. Eichholz, S. Rohn, L.W. Kroh and S. Huyskens-Kei. 2008. Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem. 109: 564-572.

19.Sellappan S., C. Akoh and G. Krewer. 2002. Phenolic compounds and antioxidant capacity of Georgia-grow blueberries and blackberries. J. Agric. Food Chem. 50(8): 2432-2438.

20.Shiow W., C. Chen, W. Sciarappa, C. Wang and M. Camp. 2008. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J. Agric Food Chem. 56: 5788-5794.

21.Singleton V.L. and J.A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic - phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144-158.

22.Tajik N., M. Tajik, I. Mack and P. Enck. 2017. The potential effect of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur. J. Nutr. 56: 2215-2244.

23.Wang S.Y. and H. Jiao. 2001. Changes in oxygen-scavenging systems and membrane lipid peroxidation during maturation and ripening in blackberry. J. Agric Food Chem. 49(3): 1612-1619.

24.Yang L., W. Ling, Z. Du, Y. Chen, D. Li, S. Deng et al. 2017. Effects of anthocyanins on cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 8: 684-693.

25.You Q., B. Wang, F. Chen, Z. Huang, X. Wang and P. Luo. 2011. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 125(1): 201-208.

Publicado

2020-10-02

Cómo citar

López, M. D., Illanes, M., Jara, P., Figueroa, I., Fischer, S., Wilckens, R., Serri, H., & Schoebitz, M. (2020). Cambios en el contenido de compuestos fenólicos bajo diferentes sistemas de producción de arándanos. Bioagro, 32(3), 169-178. Recuperado a partir de https://revistas.uclave.org/index.php/bioagro/article/view/2778